TECHNICAL REPORT # Final Report Compilation for Aggregated Load Shedding Children's court Internal Services Division Communications building October 2003 P-500-03-096-A12 ### CALIFORNIA ENERGY COMMISSION Prepared By: Architectural Energy Corporation Vernon A. Smith Boulder, CO Massachusetts Institute of Technology Leslie Norford Cambridge, MA CEC Contract No. 400-99-011 Prepared For: Christopher Scruton Contract Manager Nancy Jenkins PIER Buildings Program Manager Terry Surles PIER Program Director Robert L. Therkelsen **Executive Director** ### **DISCLAIMER** This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report. # **Acknowledgements** Les Norford, Peter Armstrong, and Helen Xing with MIT conducted this research project. Lanny Ross with Newport Design Consultants provided field support. # **Preface** The Public Interest Energy Research (PIER) Program supports public interest energy research and development that will help improve the quality of life in California by bringing environmentally safe, affordable, and reliable energy services and products to the marketplace. The Program's final report and its attachments are intended to provide a complete record of the objectives, methods, findings and accomplishments of the Energy Efficient and Affordable Commercial and Residential Buildings Program. This attachment is a compilation of reports from Project 3.5 *Aggregated Load Shedding*, providing supplemental information to the final report (Commission publication #P500-03-096). The reports, and particularly the attachments, are highly applicable to architects, designers, contractors, building owners and operators, manufacturers, researchers, and the energy efficiency community. This document is one of 17 technical attachments to the final report, consolidating two research reports from Project 3.5: - <u>Issues Affecting Load Control in Aggregates of Commercial</u> <u>Buildings (Mar 2001)</u> - Analysis and Field Test of Semi-Automated Load Shedding in LA County Test Buildings (Jun 2003) The Buildings Program Area within the Public Interest Energy Research (PIER) Program produced this document as part of a multi-project programmatic contract (#400-99-011). The Buildings Program includes new and existing buildings in both the residential and the nonresidential sectors. The program seeks to decrease building energy use through research that will develop or improve energy-efficient technologies, strategies, tools, and building performance evaluation methods. For the final report, other attachments or reports produced within this contract, or to obtain more information on the PIER Program, please visit www.energy.ca.gov/pier/buildings or contact the Commission's Publications Unit at 916-654-5200. The reports and attachments, as well as the individual research reports, are also available at www.archenergy.com. # **Abstract** ### Project 3.5, Aggregated Load Shedding MIT researchers worked closely with the Los Angeles County Government to devise methods to reduce electrical demand in groups of buildings under a common utility meter. The County's original interest was to find manual control sequences that could be used to meet the local utility's call for load reduction under an interruptible power rate. The goals were to understand what actions to take and what load reduction to expect, to measure the load to assure that the reduction actually occurred, and to estimate what the comfort or productivity impact might be. MIT undertook simulation studies as well as short-term experiments to answer these questions. - Non-Intrusive Load Monitors (described more fully under Project 2.1) as well as environmental sensors were installed to provide feedback to the County staff as well as the researchers. - The control method explored was to simultaneously raise the zone thermostat setpoints or shut off the chillers for a period of time. Based on the specific building models, load patterns, weather conditions and rate structure used in this research, a peak load reduction of 2 14% and a cost-based peak load reduction of 2 12% for aggregation cases of two or three buildings with thermostats as control variable was achieved. - Using night cooling (both fan-based and chiller-based), a 27% peak load reduction and around a 20% cost reduction was observed for a two-building case. This document is a compilation of two technical reports from the research. # **Issues Affecting Load Control in Aggregates** of Commercial Buildings ### Deliverable 3.5.1 (a) Draft Report L.K. Norford Massachusetts Institute of Technology March 9, 2001 THIS REPORT WAS PREPARED AS A RESULT OF WORK SPONSORED BY THE CALIFORNIA ENERGY COMMISSION (COMMISSION). IT DOES NOT NECESSARILY REPRESENT THE VIEWS OF THE COMMISSION, ITS EMPLOYEES, OR THE STATE OF CALIFORNIA. THE COMMISSION, THE STATE OF CALIFORNIA, ITS EMPLOYEES, CONTRACTORS, AND SUBCONTRACTORS MAKE NO WARRANTY, EXPRESS OR IMPLIED, AND ASSUME NO LEGAL LIABILITY FOR THE INFORMATION IN THIS REPORT; NOR DOES ANY PARTY REPRESENT THAT THE USE OF THIS INFORMATION WILL NOT INFRINGE UPON PRIVATELY OWNED RIGHTS. THIS REPORT HAS NOT BEEN APPROVED OR DISAPPROVED BY THE COMMISSION NOR HAS THE COMMISSION PASSED UPON THE ACCURACY OR ADEQUACY OF THE INFORMATION IN THIS REPORT. © 2001 Leslie Norford. Permission is granted to reproduce this report in its entirety, for personal or educational purposes, provided that this copyright notice is included. All other rights reserved. ### **Issues Affecting Load Control in Aggregates** of Commercial Buildings ### **Deliverable 3.5.1 (a) Draft Report** ### Introduction ### Overall goals of the project The objectives of Project 3.5 are to identify opportunities to better control electrical loads in groups of buildings by aggregating load shapes and by coordinating control actions, to evaluate the potential impact of aggregated load control, and to identify needed developments in control and communication systems. While much effort has been devoted to load management, including load shedding, in individual buildings, little reported work has focused on aggregates of buildings. Building aggregation is increasingly of interest due to the role of load aggregators in electricity-purchase contracts and the efforts at multi-building campuses to reduce electricity bills for aggregates of buildings. MIT is currently working with Drexel University to conduct exploratory research into opportunities for load management in aggregates of buildings, with emphasis on college campuses and multi-building medical facilities. ### The need for load reduction in buildings in California and other states California is experiencing a well-publicized and acute shortfall of electricity supply relative to burgeoning demand. Part of the reason for the shortfall is that many customers lack financial incentive to cut demand. Another aspect of this same lack of incentive is that two of the investor-owned electric utilities are unable to pass on wholesale prices, which have soared as a function of demand, to retail customers. In the context of control of aggregates of buildings, it is reasonable to consider the entire state as a single entity. The state government has an incentive to control load, for political reasons and because of its charge to provide useful service to state residents. At this level, there has been no expressed need to coordinate control actions over the duration of peak load buildings, because there is a built-in temporal diversity associated with uncoordinated control actions of large numbers of building owner/operators. Accordingly, any type of effective load control measure, implemented in individual buildings, is of immediate benefit to the state. The project at hand therefore has something to offer the state if it points out and tests new methods for providing the type of information needed for effective load control. It offers something more to owners and operators of clusters of buildings served by a single revenue meter, if those control actions can be coordinated to reduce the aggregated peak that determines peaking charges. The state is taking action. California Assembly Bill 970 has provided the California Energy Commission (CEC) with \$50 million to reduce state-wide peak load. The load-reduction target for the program as a whole was to be at least 200 MW, (220 MW, with an aim of achieving a load reduction of 161 MW by June 1, 2001, per Electric Power News (2001)). The load-reduction program includes six components, as shown in Table 1 (AB970 2000). Note from Table 1 that building controls tied to pricing and lighting and HVAC upgrades, along with wastewater and agriculture, provide demand reduction at lower cost than traffic-light upgrades, light-colored roofs, and renewable generation. The work in Project 3.5 can be classified as promoting a form of price-responsive load control. The California Independent System Operator (CAISO) is developing demand-response programs for Summer 2001 (Fuller 2001a, 2001b). These programs include a two-tier Demand-Relief Program (DRP) and a Discretionary Load Curtailment Program (DLCP). The first-tier DLP consists of loads without back-up generators (BUGs) and the second tier consists of BUGs. Because
generators are a source of local air pollution, the program stipulates that BUGs be called only after the first-tier and that they be used as a last resort prior to rolling blackouts. The program as a whole is intended to be implemented immediately prior to Stage 3 rolling blackouts, unlike current interruptible-load programs that are initiated at an ISO Stage 2 alert. Current interruptible-service customers cannot participate in the 2001 DLP. First-tier loads can be curtailed up to 24 hours per month and second-tier BUGs can be called no more than 21 hours over the summer. Payment to participating customers includes a fixed monthly capacity payment of \$20,000 per MW and a performance energy payment of \$500 per MWh. Requests for bids were issued in December 2000 and bids were received in February 2001. For first-tier loads, 596 MW of 1156 MW in bids have been recommended for ISO Board approval. Of the 268 MW of BUG bids, none were considered acceptable. The restrictions on BUG operation could cause this resource to be exhausted early in the summer (i.e., seven three-hour operating blocks). Further, many of the BUG bids did not include approval from local air-quality boards. The advanced metering that is central to Project 3.5 in intended to help customers better understand load-reduction opportunities and track performance at the level of an individual load. Table 1. California Energy Commission's Load Reduction Program | Program | Allocated | Goal, | Committed | Estimated | \$/kW | |-----------------------|-----------|-------|-------------|------------|-----------| | | funds, | MW | funds, | load | reduction | | | millions | | millions \$ | reduction, | | | | \$ | | | MW | | | Energy-efficient | 10 | 10 | 10.0 | 6.0 | 1669 | | traffic lights, using | | | | | | | LEDs | | | | | | | Innovative efficiency | 8.6 | 32 | 8.6 | 48.5 | 177 | | and renewables (including renewable | | | | | | |-------------------------------------|------|-----|------|-------|-----| | generation) | | | | | | | Energy-smart | 10 | 50 | 10.0 | 102.5 | 98 | | buildings (advanced | | | | | | | meters and software | | | | | | | that can dim lights | | | | | | | and raise thermostat | | | | | | | set points | | | | | | | automatically) | | | | | | | Light-colored roofing | 9.4 | 30 | 8.0 | 21.4 | 374 | | Lighting and HVAC | 5.5 | 50 | 5.5 | 79.9 | 69 | | in state buildings and | | | | | | | public universities | | | | | | | Energy-efficiency | 5.0 | 20 | 4.4 | 58.0 | 76 | | improvements in | | | | | | | wastewater treatment | | | | | | | and agriculture | | | | | | | Evaluation | 1.5 | | 1.0 | | | | Totals | 50.0 | 192 | 47.5 | 316.3 | 150 | The DLCP is being set up to provide an energy-only payment of \$250/MWh for voluntary load reduction. Participants must sign up with aggregators, who must provide a curtailable load in excess of a minimum value and who must also provide contract services, communications links, and verification mechanisms. Aggregators will receive calls for alerts and warnings and will have 60-90 minutes to firm up curtailment. Customer participation on the day of any call will be entirely discretionary. Verification would be based on interval metering for end-use loads, when available. When such metering is not available, sample measurements, historic data, process controls, data loggers, and submeters can be used. Participants must allow on-site audits and may be charged an audit fee if they are not using utility-issue interval meters. MIT's non-intrusive load monitor (NILM), part of Project 3.5, would appear to offer a useful source of low-cost information for this program, if field tests prove that it works with acceptable accuracy. Implementation of the DLCP through aggregators is an important and perhaps first case where aggregators are controlling load of independent customers and not simply amassing load for block purchases. It is the kind of case that an ASHRAE research project, to be described later, did not uncover. However, it appears that the load control in each facility will be entirely independent of what others are doing. Payments are on the basis of energy savings and not reduction in coincident peak load. Some have argued that the financial crisis facing Southern California Edison and PG&E is due in part to the structure of the California Power Exchange, in which offers to provide electricity are ranked in merit order by cost and the most expensive power needed to meet system demand sets the market clearing price that is paid to all suppliers. A hypothetical alternative is that each successful supplier would be paid the individual bid price. The California Power Exchange commissioned a blue-ribbon panel to examine the merits of both approaches (Kahn et al. 2001). The panel noted that the current system encourages suppliers to bid at their marginal cost, anticipating that the difference between that cost and the market-clearing price would provide revenue to pay for capital investments and provide a profit. Paying at the bid price, the panel argued, would cause suppliers to bid at a higher price, as close as possible to the market-clearing price. While the panel did not advocate a shift to paying generators at bid prices, it did note the role of demand control in alleviating California's supply problems. Specifically, they note that demand responsiveness is needed in the short term to reduce the inelasticity in demand that contributes to the price spikes in the Power Exchange's power market. Further, demand responsiveness in the long term will contribute to more efficient use of electricity. Demand responsiveness, in the view of the panel, is achieved via two approaches: providing a financial incentive to consumers to cede control of their electrical loads and permit them to be curtailed; or providing consumers with varying prices that show the same sort of sharp spikes as the wholesale market. The financial benefits of load control would appear to justify the cost of metering necessary to verify responsiveness. The work to be performed as Project 3.5 is intended to promote demand reduction under appropriate price signals. Electric-system reliability problems in 1998-2000 were not confined to California. The American Council for an Energy-Efficient Economy (ACEEE) recently published a report that recommends the programs shown in Table 2 to reduce peak demand as a lower-cost alternative to supply-side remedies to shortages (Nadel *et al.* 2001). Criteria for the programs included large load reduction, use of proven technologies, and reliance on successful program designs for implementation. These measures are forecast to reduce national peak demand in 2010 by about 64 GW, offsetting 40 percent of the growth in peak load predicted over the next decade. Table 2. ACEEE Recommended Programs to Reduce Peak Electrical Loads. | Program | Percentage peak | |---|-----------------| | | reduction | | New and replacement residential cooling | 45 | | systems | | | Residential cooling system tune-up and repair | 11 | | Commercial and industrial HVAC equipment | 6 | | Commercial building retro-commissioning | 15 | | and maintenance | | | Commercial and industrial lighting retrofit | 15 | | acceleration | | | Commercial and industrial lighting design | 8 | | enhancement | | ### **Electricity Rates** It is worthwhile to briefly consider the electricity rates under which building load control takes place. Rates may include charges for both energy and peak power, as well as a fixed charge. Both energy and demand charges may vary with time of day or seasonally. Both may also vary with consumption, in ascending (price increases with energy usage or demand) or descending blocks. Demand charges may be set by the peak load recorded during a twelve-month sliding window. Energy charges may vary hourly, in what is known as a real-time-pricing (RTP) rate. RTP energy prices account for the marginal cost of producing, transmitting and distributing electricity. Capital costs, for generation and transmission and distribution systems, are added to the basic rate in the form of fixed charges or an hourly adder or multiplier. Some RTP rates start with a customer baseline (CBL), which a usage profile recorded under a previous rate. A customer whose load profile does not change under the RTP rate will pay the same as under the old rate. This guarantees the same revenue stream to the utility. Changes in load lead to hourly changes in cost at a marginal rate; in some rate structures, an increase in load is priced differently from a decrease. One interruptible rate of interest for this project is Southern California Edison's I-6 rate. This rate is intended to give Edison a source of demand reduction when system capacity is strained. Participating customers receive a reduction in energy and demand charges during non-interruption hours, as shown in Table 3. The demand charge is substantial: the normal time-related demand charge of \$17.95/kW for customers with 2-40 kV service is reduced to \$8.60/kW. Service is still available during interruption periods but power is priced at \$9.01/kWh, more than 100 times the normal energy charge. Customers choose the firm-service level that sets the threshold for both lower prices on energy and demand and the penalty charges. A low firm-service level provides a large savings during non-interruption hours but a large penalty for usage during interruptions. *Table 3. Southern California Edison's I-6 Interruptible Rate (SCE 2001).* | Tariff component | I-6 charges
per meter per
month for 2-
40 kV service
above the
firm-service
level | | TOU-8
charges per
meter per
month for 2-
40 kV service | | |--|---|---------
--|---------| | | summer | winter | summer | winter | | Customer charge, \$ | | | 299 | 299 | | Facilities-related demand, \$/kW | | | 6.60 | 6.60 | | Time-related billing
demand (added to
facilities-related demand
for TOU-8), on-peak
\$/kW | 8.60 | 0 | 17.95 | N/A | | Mid-peak billing demand | 1.30 | 0 | 2.70 | 0 | | Off-peak billing demand | 0 | 0 | 0 | 0 | | On-peak energy charge,
\$/kWh | 0.07674 | N/A | 0.09422 | N/A | | Mid-peak energy charge | 0.05022 | 0.06096 | 0.05847 | 0.07071 | | Off-peak energy charge | 0.03244 | 0.03327 | 0.03758 | 0.03874 | | Penalty charge for
consumption above firm-
service level during
interruption periods,
\$/kWh | 9.01 | 9.01 | | | The I-6 rate provides a load-aggregation option to customers with multiple service accounts on the I-6 rate or other Edison interruptible-load tariff. In response to a notice of interruption, the customer may use the aggregate interruptible load to meet the load-interruption obligation. The customer may select which service accounts will be interrupted, rather than using the account to which notice of interruption was given. This option requires installation of Edison meters to record and transmit load information. The option provides an incentive for a form of aggregated-building load control, whereby load reduction at one site is used as a credit for another account. Sites do not need to be on the same service meter. However, if Edison issues interruption signals to all blocks of customers on interruptible-service rates, the load-aggregation option is effectively nullified, because penalty charges will be levied for all accounts. ### Benefits of economically correct electricity rates There is ample evidence that customers respond to changing hourly prices, particularly very high prices. Georgia Power's RTP program serves customers with an aggregated demand of 5,000 MW; these customers have reduced load 400-750 MW on moderate- to high-priced days. A subset of very responsive customers reduced load by 60% when prices exceeded \$1.00/kWh (Braithwait and O'Sheasy 2000). Georgia Power's O'Sheasy has said that "it's amazing how ingenious people become when it affects their bottom line" and noted that measures have included a shift of industrial production to take advantage of lower electricity prices on weekends (DJ 2001). Dynamic pricing can and has been implemented in a number of ways: pure hourly rates, or spot prices, spot prices or "super peak" prices that are limited to a small number of critical hours per year, and a variety of interruptible-load programs (Eatkin and Faruqui 2000, Braithwait 2000). More widespread use of rates such as these is considered to be an appropriate mechanism for ameliorating the power crisis in California. As a further benefit, even modest reduction in load can substantially reduce spot prices, by a ratio as much as 10:1 (Braithwait and Faruqui 2001). Today, interruptible load programs have been implemented not only in California but also by the PJM Interconnection, the New England ISO, and such utilities as Portland General Electric, GPU Energy, and Wisconsin Electric (Braithwait and Faruqui 2001). ### **Current load-aggregation efforts** ASHRAE has sponsored a steady stream of research projects that focus on building dynamics and control at a supervisory (rather than local-loop) level. Projects have included optimal control of chilled-water plants based on on-line model identification and optimal control of thermostat set points in a single building to minimize operating cost. In an ongoing research project, 1146-RP, ASHRAE has shifted its attention to aggregates of buildings, with the goal of identifying load-and cost-control opportunities that would exist for groups of buildings. The specific objectives of this project are - 1) To identify situations and conditions under which aggregating individual building loads is attractive for managing total, multi-building load; - To identify and evaluate operating and control strategies for use in individual buildings that will reduce energy costs at the aggregated level by taking advantage of the diversity of demand among buildings; and - 3) To develop specific recommendations as to - i) What engineering developments are needed for accurate prediction of utility prices and building loads - ii) What types of loads in buildings can be aggregated (i.e., classification of individual loads in a manner suitable for load management) - iii) What load analysis tools are available - iv) What control strategies can be used - v) What types of communication and controls systems should be considered (BEMS, internet) vi) What education needs to be provided to building owners, facilities operators, and Energy Service Companies (ESCOs). The first phase of this project included a survey of load-aggregation ventures, which revealed that the considerable amount of activity in this area was primarily focused on building portfolios of customers and not on time-of-use load control. Aggregators appeared to show little interest in a customer's ability to shift load at the time of assembling a portfolio, even though such flexibility could provide a basis for contracting for cheaper power from a supplier. While many aggregators offer energy-management services, such services appear to be focused on individual buildings. Table 4 summarizes the review of load aggregation efforts conducted as part of 1146-RP. As Table 4 suggests, load management for large consumers is becoming more tightly and automatically linked to energy prices, via Internet technologies. For example, AES New Energy recently the development of an internet-based service for selected customers in New York and New Jersey (Power Markets Week 2000). Based on spot-market prices, AES New Energy will be able to automatically start up generators and implement predetermined DSM strategies. Reduced load can then be immediately re-sold at the spot-market price. AES claims that the new system will enable it to reduce supply-side costs for its customers. Table 4. Sample Load Aggregation Ventures. (Adapted and extended from "Building Operation and Dynamics within an Aggregated Load Phase 1 Report," ASHRAE 1146-RP, Drexel University and Tabors Caramanis & Associates, January 2001.) | Organization | Owner | Services | Contracts | |--|---------------------------------|--|---| | Organization Cinergy Business Solutions PG&E Energy Services | Owner Cinergy PG&E Corporation | Services Design and engineering, energy use analysis, and energy supply ideas Supply electricity, identify energy-efficiency projects, provide financing | Business associations NH Retail Association Commercial loads with multiple locations: Marriott hotels and resorts in California Massachusetts High Technology Council load-aggregation program Equity Office Properties Trust – | | | | | Equity Office Properties Trust – 15 office buildings and parking facilities in San Francisco, San Diego, and Orange County Burger King franchises in CA – 450 restaurants Portfolio also includes McDonald's and Carl's Jr. restaurants; Blockbuster video and music stores; Rite-Aid and Save-on drugstores; Safeway, Vons and Lucky supermarkets; | | | | | Neiman Marcus, IBM,
Mitsubishi Silicon America and | | | | | NEC America; Smucker's, Pepsi
Cola General Bottlers and others. | |--|---|---|---| | Excelon | PECO Energy | Fuel, plant, and energy management services; distributed infrastructure planning, construction and maintenance; energy-efficiency evaluation and implementation; energy procurement and brokering; consolidated energy billing and reporting; commercial and industrial energy supply | Commercial and industrial: Wampler Foods Princeton Vision Quest USX Massachusetts HEFA (Health and Education Facilities), an aggregator of loads and finance provider for energy-efficiency projects) | | Onsite Energy
Corp. | | Billing analysis, demand-side
management, direct-access
planning and cogeneration
services | Business Associations of Food
Wholesalers/Distributors (e.g.,
National Frozen Food
Association, California League
of Food Processors) NJ Coalition of Automotive
Retailers (NJCAR) | | Wheeled
Electric Power | Independent,
located in
Uniondale,
NY | | Small businesses: several thousand retail customers buying electricity and natural gas. Participant in retail electricity pilot programs in New Hampshire, Massachusetts, and New York, for which
most customers are residential or small-commercial consumers | | New Energy
(formerly New
Energy
Ventures) | AES | Shared-savings programs, internet link between trading desk and major customers to start on-site generators or curtail load | Large commercial users: California Retailers Association Catholic Health Care West (San Francisco hospital) Association of California Water Agencies Northern California Grocers Association | | Allegheny
Energy Supply | | Volume pricing | Large commercial and industrial users: NJ Chemical Industry Council Pennsylvania State University Brandywine Realty Trust Pennsylvania municipalities | | Sempra
Energy
Solutions | Sempra Energy (formerly San Diego Electric and Gas and S. California Gas) | Uses Web Encharge, an internet-based product to manage energy information and billing. Information is updated daily. Also offers energy-cost savings)(up to 5% in one case) and bill consolidation | Retail chains with multiple locations across broad geographic locations: • Union Bank of California-252 locations in California, Oregon and Washington • Advance Auto Parts-700 stores in 37 states • Penske Truck Leasing-120 locations in Midwest • City of San Diego-2400 facilities, including Qualcomm | | | | | | Stadium and the San Diego
Convention Center | |----------|--|--|---|--| | EnerShop | Wholly-
owned
subsidiary of
Central and
Southwest
Corporation | Uses EnerACT, a two-way communication system for optimizing energy operations that collects facility information over the internet. Engineers analyze information and advise clients on energy-savings opportunities. Also offers energy-aggregation services. | • | La Quinta Motor Inns-19
facilities in Texas and California
Building Owners and
Management Association
(BOMA) of Dallas | The next phases of 1146-RP include development of procedures that might later evolve into tools that could be used by aggregators to quantify the benefits of load-curtailment actions and to optimize them in the sense of accounting for both demand reduction and changes in thermal comfort. In lieu of classifying load profiles in the absence of control measures, itself a useful method for targeting buildings where load curtailment could have the most benefit (Hull and Reddy 1990), this work will use simulation to determine how load shapes change under control actions. A related effort will be done as part of the revised scope of work for Project 3.5, to be discussed later in this report. ### **Current load-control efforts in Los Angeles County buildings** MIT researchers have twice visited buildings operated or occupied and operated by the Internal Services Division (ISD) of Los Angeles County. As noted in the Deliverable 2.2.2a report, the subject buildings include the ISD headquarters and the Edmund Edelman Children's Court. ISD staff has obtained permission to work in these buildings and have obtained preliminary acceptance of an MIT request to also work in a nearby building occupied by Los Angeles County sheriffs. These buildings are on the I-6 rate. Two intertwined issues face ISD: whether to stay on the rate and how to respond to it. In prior years, customers have been given an annual option to continue with the rate for the next year or leave it. Such decisions have been made in the context of available response mechanisms and estimates of the frequency of interruption. At the moment, there is a moratorium on leaving the program, but energy penalties are not being collected. As of January 2001, when the Lead Investigator visited ISD headquarters, the Director of ISD had asked that building load be cut substantially during interruption periods. In that building, a facilities engineer, who is physically based in another part of Los Angeles and serves a number of buildings, has reduced chiller power by increasing the discharge-air set point in the constant-volume, dual-duct system. ISD staff is considering a lighting retrofit that will enable lights throughout the building to be dimmed. Little is now done in the children's court, which has a variable-air-volume (VAV) system. I-6 buildings feature a power meter that shows the consumption for the entire building and provides visual feedback about the magnitude of power reductions during I-6 periods. There are two problems with this approach. First, the information is only available locally, to a person standing in front of the meter. Second, it requires that person to estimate or remember the power level before any control actions were taken and it only shows the aggregated impact of all control actions. No information is provided about individual actions. While individual measures could in principle be staggered, there is an overwhelmingly large cost penalty to doing so. ISD staff has expressed strong interest in learning the impact of individual measures. Further, staff would like to have a first-cut breakdown of major loads, to help identify targets for further control action. Accordingly, there is considerable interest in what the NILM could offer. It is worth noting that this interest in not primarily centered on control of aggregates of buildings, the focus of the project. ISD staff look at buildings individually, due to current control options and the structure of the I-6 rate. But the targeted buildings still provide a useful test bed, for several reasons. ISD staff members are supportive, in large part because of the cost of service during interruption periods. Further, ISD headquarters and the sheriff's office are on the same revenue meter. Coordinated control actions that would reduce aggregated peak loads would save the \$8.60/kW demand charge noted in Table 3 in addition to the much large energy penalty charge of \$9.01 for each kWh used during an interruption period. ## Assessment of Aggregated-Building Load Management Issues (as included in Scope of Work for Deliverable 3.5.1a) The scope of work for Project 3.5, Deliverable 3.5.1a, includes an investigation of five issues: engineering, implementation, customer motivation, legal issues, and requirements for load-cooperative agreements. These will now be addressed. ### Engineering aspects of aggregated-building load management Norford *et al.* (1996, 1998) investigated four strategies that a building operator could consider in order to respond to real-time prices: - 1. Thermostat control - 2. Thermal storage systems - 3. On-site generation of electricity - 4. Control of lights **Thermostat control**. Building dynamics constrain load control based on thermostat adjustment in individual buildings. Consider, for example, an effort to pre-cool an office building in early-morning hours, while electricity rates are low. In principle, the thermostat is set to the lower limit of thermally comfortable conditions. Temperatures are then maintained at this lower level until rates hit peak levels, at which point the thermostat setting is raised. Electrical power demanded by air conditioners or chillers, cooling towers, chilled-water and condenser-water pumps, and ventilation fans is reduced. In the simplest case, the chiller and associated pumps are turned off completely until indoor temperatures reach the upper bound of thermal acceptability, at which point this equipment is again turned on, to maintain the upper bound set point until the end of the peak period. Such a simple approach usually fails to reduce demand charges during peak periods, because the indoor temperature rises to the upper limit before the peak period is over and the chillers must be turned on again. However, this approach is in large part satisfactory for a building under the I-6 rate, because the largest expense is the energy surcharge. Optimal or near-optimal control strategies (Anderson and Brandemuehl 1992, Braun 1990, Daryanian 1989, Keeney and Braun 1996, Norford *et al.* 1998, Rabl and Norford 1991, Reddy *et al.* 1991, Ruud *et al.* 1990) for temperature control and use of thermal mass for pre-cooling in a single building account for both the electricity rate and the thermal dynamics of the building. A supervisory controller with such an algorithm would control the temperature set point during peak charge periods (whether under a time-of-use rate or a real-time rate) such that electricity charges were minimized. This means that the chillers are running at part load during peak periods. Norford *et al.* (1996) systematically examined hourly loads and real-time prices, in order to determine what hours were best suited for cooling a building. Minimum and maximum allowable indoor temperatures were constraints. Cooling at night, when rates are usually low, was penalized by the increase in heat flow across the building envelope, expressed as a dimensionless cool-storage efficiency, $\eta_{storage}$: ``` R_{z,h} = R_{t,z,h} \eta_{conv} \eta_{storage} (R > 0, i.e., charging) R_{z,h} = R_{t,z,h} \eta_{conv} (R < 0, i.e., discharging) ``` where $R_{z,h}$ = zone response in kW for hour h $R_{bz,h}$ = zone response in tons for hour h η_{conv} = conventional cooling (e.g., chiller) efficiency, kW/ton The storage efficiency approximates losses due to heat flow through the building envelope. If the building is pre-cooled with a unit of energy, some of that energy is lost by the time when it is needed. Norford *et al.* (1996) used a default value of 0.8. The space-temperature
control analysis was performed for each user-defined zone in a building, for each of three use-specified periods during the day, for both weekdays and weekends. The strategy was one of the following: - Space temperature is unchanged. - Space temperature is allowed to swing minimally (default 1 °F) on days when prices are above the threshold. - Space temperature is allowed to swing moderately (default 2 °F) on days when prices are above the threshold. • Space temperature is allowed to float on days when prices are above the threshold. The algorithm, termed a first-order approximation to an optimal solution, was simple to implement in simulation for a single building: - 1. For each zone, take a given day type (for which the RTP price type is at or above the threshold), 24 hours of data. - 2. For each hour, calculate the cost per ton of direct cooling and shifted cooling using chiller and building mass storage efficiencies and RTP prices. - 3. If the storage price for the least expensive hour is not less than the conventional price for the most expensive hour, using building mass to shift load for the day is not feasible. - 4. Search for candidate discharge hours. If found, take the most expensive. - 5. Search for candidate charge hours. If found, take the least expensive. - 6. Classify each hour of the day as "inside" (after the charge hour and before the discharge hour) or "outside" (before the charge or after the discharge hour). - 7. For the inside and outside sequences, find the maximum possible load shift, given the constraints of temperature control limits, available excess chiller capacity, and chiller use. Take the higher of the two, and shift load from the discharge hour to the charge hour. Adjust temperatures, conventional cooling use, and excess capacity variables. - 8. Repeat from step 5 until all charge candidates are exhausted. - 9. Repeat from step 4 until all discharge periods are exhausted. - 10. Calculate the response in tons and kWh/h. Negative response is a decrease in energy use. - 11. Repeat for the next day type. Optimal control strategies and simplified approximations include a model for the thermal dynamics of the building, parameters of which must be learned on-line or supplied as estimates made from review of building plans or from experience. In Daryanian (1989), for example, the model was a simple one-node thermal capacitance with two thermal resistances. The thermal parameters were estimated with a least-squares procedure from repeated measurements of the outdoor and indoor air temperatures and the heat (or cool) input. In many cases, these control strategies also require a model of plant performance as a function of load and environmental conditions. In principle, these models could be extended to apply to groups of buildings. Thermostat set points and chiller loads in individual buildings would be manipulated to minimize the cost of operating the HVAC plants in all the buildings. The third task of this project will explore such an approach. **Thermal storage systems**. Load reduction can include measures other than thermostat control. Unlike space-temperature control, control of TES requires no variation of indoor temperature. A near-optimal control algorithm, as presented in Norford *et al.* (1996, 1998), follows the same logic as that for space-temperature control, given above. The thermal-storage tank is charged at hours when prices are low and discharged when prices are high. The algorithm must account for the capacity of the tank and the charge and discharge rates as well as the efficiency of chillers when producing chilled water for direct cooling and when producing a low-temperature glycol solution suitable for making ice. Daryanian *et al.* (1994) and Daryanian and Norford (1994) reported a three-year experiment to implement an RTP-based controller in an office building in New York State. The customer's cost of service was reduced about 5% compared to time-of-use control. Compared to no-storage operation, costs were reduced 22%. Simulations showed that savings relative to time-of-use control would have increased from 5 to 13% if the storage tank were larger. Others have developed more detailed and accurate algorithms for optimally controlling TES in a single building (Drees and Braun 1996, Henze *et al.* 1997a and 1997b, Henze and Krarti 1998 and 1999). In principle, thermal-storage systems in multiple buildings could be controlled to minimize aggregate costs. However, Project 3.5 will not emphasize thermal-storage systems (TES) because they are not in widespread use and are not used in the buildings identified in Deliverable 2.2.2a. **On-site generation**. Use of on-site generation typically produces the largest load reduction as a result of a single control action. Generators installed to serve emergency loads when there is no power from the grid need appropriate paralleling equipment to meet part of a building's load while the grid serves the remainder. It is relatively simple to schedule a generator when there is a pure RTP rate with hourly prices: the generator is used when its operating and maintenance cost is lower than the hourly price. Scheduling is more difficult when there is a demand charge, under an RTP or time-of-use rate (Shanbhag 1998). Generators have been used in load-coop programs, where a utility favors groups of buildings with lower rates in exchange for an aggregated load reduction when prompted, subject to an upper limit on the number of load-reduction events. Load-coop programs such as this are very much the sort of aggregated-building load control effort that Project 3.5 seeks to support, with more-informative metering. However, use of on-site generation will very likely not be part of Project 3.5, unless use of the generator in the LA County Children's Court becomes a load-reduction system. The thrust of Project 3.5 centers on demand reduction rather than local supply, and air-quality regulations continue to be a sufficiently major concern to make the California ISO consider generators as a last-resort approach to avoiding blackouts. Curtailment of HVAC loads and lighting. Supervisory control of HVAC plants involves the automated selection of set points that serve as reference inputs to local-loop controllers. Optimal control of thermostat set points, as described above, is one type of supervisory control of the building as a whole, which can usefully be distinguished from supervisory control of set points internal to the HVAC system. The thermostat set points are used as the reference inputs to controllers that regulate the amount of cooling that flows into rooms. HVAC set points include supply-air temperature, supply-air static pressure, chilled-water temperature, and condenser-water temperature for those chillers that are water cooled. There is a rich literature on this subject, as typified by Brandemuehl and Bradford (1999) and as summarized in an excellent review in Chapter 40, Supervisory Control Strategies and Optimization, of the 1999 ASHRAE HVAC Applications Handbook (ASHRAE 1999). Typically, supervisory control strategies that adjust HVAC set points are intended to minimize the energy (electricity, gas oil) required to deliver a certain service (heating or cooling). The amount of service is taken as a constraint. These strategies are not load-control measures. The objective function is energy usage and inputs to the optimization include loads but not prices. In short, a supervisory controller would select the same set of set points whether prices were high or low. In contrast, load-curtailment strategies seek to adjust HVAC set points, or turn equipment off, in order to reduce load in ways that unavoidably reduce service. Gabel (1998) and Flood *et al.* (1994) described the implementation of an RTP-based automatic control system in a large New York City hotel. As shown in Table 5, fans and lights were controlled. The total controlled load of 1.2 MW as 20 percent of the building peak electrical load of 6 MW. The predominant control action was on/off control for individual loads as a function of individual price thresholds. For two air handlers with variable-speed drives (VSDs), the control was a reduction in motor speed by 20 percent. Table 5. Automatic Load Reduction in Response to Real-Time Prices in a New York Hotel (Flood et al. (1994). | Controlled equipment | Load
(kW) | RTP control strategy | RTP
trigger | |----------------------------------|--------------|---|----------------| | | (,,, | | (\$/kWh) | | Atrium circulating fans | 410 | On/off for one or both fans as a function | 0.06 | | | | of RTP trigger price | | | Air-handling fans | 125 | On/off as a function of RTP trigger price | 0.06 | | Theater air-handling fans | 70 | On/off as a function of RTP trigger price | 1.00 | | Elevator air-handling fans | 25 | On/off as a function of RTP trigger price | 0.40 | | Outdoor advertising sign | 100 | On/off as a function of RTP trigger price | 0.40 | | Exterior lighting | 105 | On/off as a function of RTP trigger price | 0.06 | | Ballroom lighting | 30 | On/off as a function of RTP trigger price | 1.00 | | VSDs on eighth and ninth floors, | 20 | Reset 20% lower if RTP trigger is | 0.20 | | supply and return fans | | exceeded | | | Miscellaneous motor loads | 330 | On/off as a function of RTP trigger price | 0.06 | | Total | 1215 | | | Energy reductions during high-priced hours totaled 2.5 GWh in 1994. As shown in Table 6, the largest savings, 73 percent of the total, was from turning off or slowing down airhandling fans. Reduced cooling provided to the building - i.e., a reduction in service – accounted for 16 percent of the savings and exhaust fans eight percent. Lights produced a very small savings because few lighting circuits were controlled, due to the expense of re-wiring. Table 6. Reduction in Annual Energy Use Due to RTP Control in a New York Hotel. | System | Electrical-energy |
Percentage reduction | |---------------------|------------------------|----------------------| | | reduction in 1994, GWh | | | Air-handling fans | 1.87 | 73 | | Chillers | 0.42 | 16 | | Exhaust fans | 0.21 | 8 | | Lighting | 0.03 | 1 | | Miscellaneous loads | 0.02 | 1 | | Total | 2.55 | 100 | Flood *et al.* (1994) proposed a somewhat richer set of control actions for another hotel, as shown in Table 7. Of note is pre-cooling, discussed above, optimal control of a thermal-storage system, and modulation of motor speeds for fans and pumps. Table 7. Proposed RTP Control for a San Francisco Hotel (Flood et al. (1994). | Controlled equipment | Load | RTP control strategy | |---------------------------|-----------|---| | | (kW) | | | Air-handling fans (VSDs) | 275 | Modulate set point as a function of RTP price level | | Pump motors and exhaust | 140 | Modulate set point as a function of RTP price level | | fans (VSDs) | | | | Lighting (on/off) | 30 | On/off as a function of RTP trigger price | | Lighting dimmers | 20 | Modulate set point as a function of RTP price level | | Ballroom and meeting | 200 | Pre-cool as a function of RTP price level and occupancy | | room HVAC systems | | | | Office ventilation fans | 20 | Reset CO2 set point as a function of RTP price level | | Thermal cool storage | 95 | Optimize the charging and discharging schedule based | | | | on the predicted cooling load and RTP price level | | Miscellaneous motor loads | 100-200 | On/off as a function of RTP trigger price | | Kitchen equipment | 20 | Optimize scheduling and coordination of various | | | | kitchen operations as a function of RTP price level | | Total | 900-1,000 | | Norford *et al.* (1998) based reduction in lighting levels on the output of an expert system that queried the facility manager about space type, service level when occupied, occupancy status of the space, whether control was manual or automatic, the use of dimming or on/off switching control, and the presence of usable daylight. For example, illuminance level and lighting power might be reduced in a hotel corridor, where occupants pass through the space quickly and the tasks are not critical, but would remain at normal levels in an executive conference room occupied in early evening when daylight is not available. ### Implementation issues What are the barriers to implementation of load-reduction strategies in single buildings or aggregates of buildings? During the January meeting of the Project Advisory Committee (PAC), a PAC member expressed the view that building energy management systems (BEMS) can control temperatures to reduce load. The Lead Investigator for this project believes this not to be the case. Optimal temperature control algorithms have been tested in simulation and in laboratories, but little work has been done in real buildings. One ongoing ASHRAE research project designed to provide a field test has been hampered by changes in ownership of the targeted test building. In single buildings, therefore, a key implementation barrier appears to be lack of supervisory control algorithms in commercially available BEMS software. Even were such algorithms available in the produce line of one or more controls manufacturers, it would be necessary for the owner or operator of a candidate test building to implement the algorithm. This is a significant barrier. If the BEMS in a targeted building is not part of the product line that includes the optimal control algorithms, it is not likely that it would be replaced. Even if the BEMS in the target building were made by a company that could provide an optimal control algorithm, the control could require additional upgrades, such as centrally adjustable temperature set points throughout the building. Work with aggregates of buildings would tend to exacerbate this problem, but it also offers a way forward. If aggregated-building load control is to be implemented as a high-level supervisory control system, in which an optimizer accounts for the dynamics of several buildings, it would be relatively straightforward to test in simulation but very difficult to implement, because the problems in individual buildings would be compounded for the aggregate. On the other hand, if aggregated-building control can be implemented as a coordinated series of actions that are easily implemented manually or automatically, such as turning off chillers at different times in different buildings, then there is some hope for near-term load reduction. Another perspective on implementation comes from financial incentives currently in place in California to encourage load reduction during peak periods. These incentives, whether in the form of the energy penalty in an interruptible-service rate or payments from state agencies for reduced energy usage, address energy usage and not peak power. The aggregate effect of individual actions to reduce energy use will certainly be a reduction in system-level power. And customers may realize demand-charge savings for reducing peak power. But to the extent that incentives focus on energy, the aggregated-building load control problem from the perspective of an owner of multiple buildings or an aggregator becomes one of ranking and implementing energy-reduction measures in individual buildings. Implementation does not require coordinated control actions, but does require a review of all sites in aggregate to determine the most cost-effective energy-reduction opportunities. ### Customer motivation As Kahn et al. (2001) noted, customers need to be motivated to control peak loads, either through payments in exchange for allowing a service provider to automatically curtail load or run an on-site generator or through communication of marginal prices that show sharp increases when system demand nearly matches available supply. Such motivations have now been provided to the owners and operators of many commercial buildings in California. The test sites to be used for Project 3.5 are on Southern California Edison's I-6 rate that, until very recently, has provided ample motivation through its energy penalty charge. While penalty charges are not being collected at the moment, it is anticipated that financial incentives for load reduction will continue to be an option for those who operate the test-site buildings. ### Legal issues The scope of work for Deliverable 3.5.1 included an assessment of legal issues and requirements for effective load-cooperative programs. Legal issues, meaning regulations that affect use of load-control technologies, have been mentioned earlier in this report and include: - Permitting of back-up generators - Regulator-approved rates that provide incentive for load control - State programs that provide payment for load reduction - Metering, measurement and verification requirements For aggregates of buildings, the issues also include rates that allow credit for load reduction in buildings that are not part of a load-interruption block and regulations that affect bringing multiple meters under a single account. The Lead Investigator's assessment is that laws and regulations in California, as typified by Assembly Bill 970, are in general supportive of state-wide load reduction. Rates with what economists would consider proper signals are not in universal use. CEC commissioners (Rosenfeld, as quoted in DJ 2001) and others have noted that real-time rates should be more widely implemented. The economic crisis currently faced by consumers and two investor-owned electric utilities is causing some changes, as in the implementation of the I-6 rate. Overall, however, laws and regulations would not appear to hamper the experimental work planned for Project 3.5 nor unduly constrain the use of the results of this project in other buildings. ### Requirements for Effective Load-Cooperative Agreements The intent of this sub-task was to enumerate what is required for building owners and operators to work together to reduce load. Again, this issue has been addressed in part in earlier parts of this report. In short, the requirements are - financial incentives; - information about loads and load-control opportunities; and - the means to reduce load. These same requirements apply to a single building, of course. For aggregates, the financial incentives and demand for interaction apply at a level higher than an individual building. For example, in a traditional load-cooperative program, a utility gives a group of commercial building owners a financial incentive for reducing aggregated load. All share in the incentive and all bear a collective responsibility to reduce load when asked. The Discretionary Load Control Program under consideration by the CAISO provides an incentive for a form of cooperative action, in that load-curtailment coordination and measurement is the responsibility of a load aggregator. ### **Conclusions** Based on the findings reported above, the Lead Investigator proposes to modify the scope of work and accelerate the schedule for the demonstration portion of Project 3.5. The Lead Investigator proposes to delete Deliverables 3.5.1b and 3.5.2a as unnecessary in California at this time. Further, it is proposed to shift the emphasis of Deliverables 3.5.3a and 3.5.4a and to place more emphasis on field studies. The details of the proposed changes are described in a separate letter. ### References AB970. 2000. www.energy.ca.gov/efficiency/ab970. Andersen, I. and M.J. Brandemuehl, 1992. Heat storage in building thermal mass: a parametric study. *ASHRAE Transactions*, V.98, pt.1. ASHRAE. 1999. HVAC Applications Handbook. ASHRAE, Atlanta. Braithwait, S.D. 2000. "Residential TOU Price Response in the Presence of Interactive Communication Equipment" In *Pricing Electricity in Competitive Markets*, edited by A. Faruqui and K. Eatkin, Kluwer Academic Publishing. Braithwait, S.D. and M. O'Sheasy. 2000. "Customer Response to Market Prices – How Much
Can You Expect When You Need It Most?" EPRI International Energy Pricing Conference. Braithwait, S. and A. Faruqui. 2001. Unpublished information. L.R. Christensen Associates and EPRI. Brandemuehl, M J. and J.D. Bradford. 1999. "Optimal Supervisory Control of Cooling Plants Without Storage." ASHRAE Research Project 823-RP Final Report. ASHRAE, Atlanta. Braun, J.E., 1990. Reducing energy costs and peak electrical demand through optimal control of building thermal mass. *ASHRAE Transactions*, Vol.96, pt.2 Daryanian, B. 1989. "Scheduling of Electricity Consumption Under Spot Prices." Ph.D. thesis in Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA. Daryanian, B., L. K. Norford, and R. D. Tabors. 1994. "Automatic Control of Thermal Electric Storage (Cool) Under Real-Time Pricing." New York State Energy Research and Development Authority Report 94-13. Daryanian, B. and Norford, L. K. 1994. "Minimum-Cost Control of HVAC Systems Under Real-Time Prices," *Proceedings of Third IEEE Conference on Control Applications*, Glasgow, U.K. (1855-1860). DJ. 2001. "Experts Tout Variable Pricing to Help Calif Energy Woes." Dow Jones on-line news service, March 4, 2001, story 0361. Drees, K.H. and J.E. Braun. 1996. "Development and Evaluation of a Rule-Based Control Strategy for Ice Storage Systems." *Int. J. of HVAC&R Research* 2(4):312-336. ASHRAE, Atlanta. Eatkin, K. and A. Faruqui. 2000. "Pricing Retail Electricity: Making Money Selling a Commodity" in *Pricing Electricity in Competitive Markets*, edited by A. Faruqui and K. Eatkin, Kluwer Academic Publishing. Electric Power News. 2001. February 9, 2001. Energy Central Daily, CyberTech, Inc. Flood, J., L. Carmichael, P. Vold. 1994. "Automated Building Control and Real-Time Pricing: From Inception to Results." *Proceedings of the EPRI Innovative Pricing Conference*, Tampa, FL. Fuller, D. 2001a. "Summer 2001 Preparedness and Demand Response Programs." Memorandum to ISO Board of Governors, February 14. Fuller, D. 2001b. "Summer 2001 Preparedness and Demand Response Programs." Presentation to California ISO Governing Board, February 21. Gabel, S.D., L. Carmichael and G. Shavit. 1998. "Automated Control in Response to Real-Time Pricing of Electricity." *ASHRAE Journal*, November: 26-29. Henze, G.P., M. Krarti, and M.J. Brandemuehl. 1997a. "A Simulation Environment for the Analysis of Ice Storage Controls." *Int. J. of HVAC&R Research* 3(2):128-1488. ASHRAE, Atlanta. Henze, G.P., R.H. Dodier and M. Krarti. 1997b. "Development of a Predictive Optimal Controller for Thermal Energy Storage Systems." *Int. J. of HVAC&R Research* 3(3):233-264. ASHRAE, Atlanta. Henze, G.P. and M. Krarti. 1998. "Ice Storage System Controls for the Reduction of Operating Costs and Energy." *Journal of Solar Energy Engineering*, November. ASME, New York. Henze, G.P. and M. Krarti. 1999. "The Impact of Forecasting Uncertainty on the Performance of a Predictive Optimal Controller for Thermal Energy Storage Systems." *ASHRAE Transactions* 105(1). ASHRAE, Atlanta. Hull, D.A. and T.A. Reddy. 1990. "A Procedure to Group Residential Air-Conditioning Load Profiles During the Hottest Days in Summer." *Energy* 15(12):1085-1097. Kahn, A.E., P.C. Crampton, R.H. Porter, and R.D. Tabors. 2001. "Pricing in the California Power Exchange Electricity Market: Should California Switch form Uniform Pricing to Pay-as-Bid Pricing? Blue ribbon panel report to the California Power Exchange. Keeney, K.R. and J.E. Braun. 1996. "A Simplified Method for Determining Optimal Cooling Control Strategies for Thermal Storage in Building Mass." *Int. J. of HVAC&R Research* 2(1):59-78. ASHRAE, Atlanta. Nadel, S., F. Gordon, and C. Neme. 2001. "Using Targeted Energy Efficiency Programs to Reduce Peak Electrical Demand and Address Electric System Reliability Problems." American Council for an Energy-Efficient Economy, Washington, D.C. Norford, L. K., Englander, S. L., and Wiseley, B. J. 1996. "Demonstration Knowledge Base to Aid Building Operators in Responding to Real-Time-Pricing Electricity Rates." ASHRAE Research Project 833-RP Final Report. ASHRAE, Atlanta. Norford, L. K., Englander, S. L., and Wiseley, B. J. 1998. "Demonstration Knowledge Base to Aid Building Operators in Responding to Real-Time-Pricing Electricity Rates." *ASHRAE Transactions*, Vol. 104, Pt. 1. Power Markets Week. 2000. September 18. Mc-Graw-Hill. Rabl, A., and L.K. Norford, 1991. "Peak load reduction by preconditioning buildings at night." *International Journal of Energy research*, Vol. 15, pp.781-798. Reddy, T.A, L.K. Norford and W. Kempton, 1991. "Shaving residential electricity peaks by intelligent use of building thermal mass," *Energy*, Vol. 16, p.7. Ruud, M.D., J.W. Mitchell and S.A. Klein, 1990. "Use of building thermal mass to offset cooling loads," *ASHRAE Transactions*, Vol. 92, Pt.2. SCE. 2001. www.sce.com; rate information: http://www.sce.com/005 regul info/005a3b biz rates.shtml; TOU-8 description: http://www.sce.com/bus_sols/large_business/pdf/tou-8.pdf; TOU-8 tariff: http://www.sce.com/005_regul_info/tm2/pdf/ce54-12.pdf; I-6 tariff: http://www.sce.com/005_regul_info/tm2/pdf/ce76-12.pdf Schanbhag, V.V. 1998. "Optimal Control Systems in Response to Diverse Electricity Pricing Structures." M.S. thesis in Operations Research and in Technology and Policy, Massachusetts Institute of Technology, Cambridge, MA. # Project 3.5 Aggregated Load Shedding # Task 3.5.5 Analysis and Field Test of Semi-Automated Load Shedding in LA County Test Buildings Deliverable 3.5.5(a) Report of Field Testing **Submitted to Architectural Energy Corporation** Under the California Energy Commission's **Public Interest Energy Research (PIER) Program** **Energy-Efficient and Affordable** **Small Commercial and Residential Buildings** California Energy Commission Contract 400-99-011 P.R. Armstrong and L.K. Norford Massachusetts Institute of Technology June 12, 2003 ### **Table of Contents** | Introduction | 1 | |--|----| | Technical Approach | 3 | | Curtailment strategies | 3 | | Peak-shifting strategies | 4 | | Instrumentation | 6 | | Envelope thermal response | 8 | | Model identification | 11 | | Peak-shifting potential | 12 | | Curtailment tests | 12 | | Peak-shifting tests | 13 | | Outcomes | 14 | | ECC Curtailment | 14 | | ISD curtailment | 15 | | Zone conditions | 16 | | ECC peak-shifting | 17 | | ISD peak shifting | 19 | | Model identification | 22 | | Peak-shifting potential | 25 | | Conclusions and Recommendations | 28 | | References | 30 | | Appendix A. ISD Building Description | 31 | | Appendix B. ECC Building Description | 37 | | Appendix C. Model Identification Algorithm and Tests | 40 | | Appendix D. Design Conditions and TMY Weather | 42 | | Appendix E. Simulation | 43 | | Appendix F. Electric Rate Structure | 49 | | Appendix G.□Optimization Algorithms | 51 | | | | ### Report on Measurement and Experimental Plans for Load Shedding in LA County Buildings THIS REPORT WAS PREPARED AS A RESULT OF WORK SPONSORED BY THE CALIFORNIA ENERGY COMMISSION (COMMISSION). IT DOES NOT NECESSARILY REPRESENT THE VIEWS OF THE COMMISSION, ITS EMPLOYEES, OR THE STATE OF CALIFORNIA. THE COMMISSION, THE STATE OF CALIFORNIA, ITS EMPLOYEES, CONTRACTORS, AND SUBCONTRACTORS MAKE NO WARRANTY, EXPRESS OR IMPLIED, AND ASSUME NO LEGAL LIABILITY FOR THE INFORMATION IN THIS REPORT; NOR DOES ANY PARTY REPRESENT THAT THE USE OF THIS INFORMATION WILL NOT INFRINGE UPON PRIVATELY OWNED RIGHTS. THIS REPORT HAS NOT BEEN APPROVED OR DISAPPROVED BY THE COMMISSION NOR HAS THE COMMISSION PASSED UPON THE ACCURACY OR ADEQUACY OF THE INFORMATION IN THIS REPORT. ### Introduction This report documents the load shedding control strategy development and the field test activities of CEC/AEC Task 3.5.5. The body of the report describes load curtailment strategies, instrumentation, and the results of simulations and field tests. The objectives of the load control task are threefold: - 1) characterize transient building cooling load models empirically, - 2) identify load shedding potential and promising control strategies, - 3)demonstrate the resulting load shedding controls in our test buildings, - 4) assess the broader potential for peak shifting in LA. Two LA County buildings that have been used to test demand responsiveness and associated control strategies are shown, in aerial view, in Figure 1. The Internal Services Division (ISD) Building is on the west edge of the county's Eastern Avenue campus and the Edmund Edelman Children's Court (ECC) building is at the northeast corner. The campus covers about 200 acres and the distance between ISD and ECC is about one half mile. A third monitored building (our weather station site) on the south edge of the campus is also circled. The Internal Services Department is administered from one main three-story office building referred to as the ISD Building. The gross floor area is 68,826 ft², of which 45,646 ft² is office space. The ISD Building is cooled by two reciprocating chillers with constant-volume air distribution. A built up fan system comprising a 60 hp supply fan and a 20 hp return fan serves the entire building. Hot- and cold-deck supply temperatures are controlled by modulating hot and chilled water flow rates to the coils which are located just downstream of the supply fan. Additional data appears in Appendix A. Children's Court is a 182,000 (net), 275,530 (gross) square foot, six-story building erected in 1992. The ECC is cooled by two 500-ton centrifugal chillers with VAV distribution. A built-up fan system comprising two 150 hp supply fans and two 50 hp return fans serves the entire building. The chillers, fans, cooling towers and boilers are located
at roof level in a mechanical penthouse. See additional data in Appendix B. Figure 1. Monitored buildings on the LA County Eastern Avenue Campus Because they are located on the same campus, coordination of load shedding among the buildings should be possible. Coordination is important for achieving the best outcomes with respect to County utility costs and electric supply reliability at a regional level. The County recently installed a Cutler-Hammer monitoring system that allows operators to track over 200 service entrance and (in some cases) significant end-use loads in most of the large county buildings on and off the Eastern Avenue campus. Fifteen-minute load data are collected and disseminated by a Silicon Energy data management system so that the data can be readily accessed by staff for a variety of analyses including, potentially, the coordination of operator responses to a utility curtailment. The body of the report has two main sections: *Technical Approach* and *Outcomes*. Each of these main sections is subdivided by subtask: Control strategy development, Instrumentation, Thermal response model, Model identification, Benefits assessment, and Field testing. Appendix A and B document the characteristics of the two test buildings. Appendix C documents the model identification code. Appendices D-G pertain to benefits assessment: Appendix D summarizes climate data, Appendix E describes the main elements of the simulation program, Appendix F describes the electric rate structure and evaluation of annual electric utility costs for a given building, and Appendix G describes the night precooling optimal control algorithms. ### **Technical Approach** Load shedding and peak shifting strategies are constrained by building and HVAC plant characteristics as well as climate, utility rate structure and building occupancy requirements. The analytical framework for dealing with different climates, rate structures and occupancies is well established. One-day ahead weather forecasts are now quite reliable and internal gains, predominantly light and plug loads, can, once disaggregated by a NILM from the building total, be similarly predicted [Seem and Braun 1991]. However, thermal response to weather, internal loads and HVAC inputs is generally considered unique to each building and difficult to characterize empirically [Braun and Chaturvedi 2002]. The development of a general model and model identification procedure sufficiently robust to be automated is therefore a central and challenging prerequisite to the implementation of useful control strategies. The need to test the model and identification procedure, as well as the control strategies, in at least two very different buildings follows from recognition that different buildings are unique with respect to thermal response. Careful instrumentation and monitoring of the test buildings is essential to the experimental side of this task. Broader assessment of control strategies, on the other hand, can only be accomplished by simulation. A simulation model that can handle empirically derived building thermal response functions as well as engineering models is therefore another key part of the technical approach. Curtailment Strategies. A building's peak electrical demand may be reduced by - 1) reducing non-HVAC loads (lighting and plug loads), and/or - 2) reducing HVAC cooling capacity (fans, chillers, pumps and cooling tower). Reduction of base load is the first measure that should be considered because energy savings accrue for all hours of operation, are not subject to occupant, operator, or controller behaviors, and generally result in additional cooling plant and distribution system load reductions. Lighting is a significant base-load component in ISD, ECC, and most other county buildings. Office equipment is a significant base load in the ISD and ECC and other types of equipment may be significant in other county buildings. Improvements in heating and cooling plant and air distribution efficiency are also classified as baseload reduction measures¹. Short-term reductions in plug and lighting loads are generally the second most desirable curtailment measure because they produce additional cooling capacity reductions without occupant discomfort. The bonus, of course, is that curtailment of lighting and plug loads effects an immediate reduction in cooling load which the control system will sense and automatically respond to by effecting just the capacity reduction needed to maintain room conditions near setpoint. Dispatchable loads may include such equipment as copiers and printers, two-level lighting, general lighting (if task lighting or centrally controlled dimmable ballasts are available) or even task lighting (if sufficient daylighting is available), and may even be extended to workstations of users who are able to indulge in _ ¹ The ISD has significant potential in the form of CV to VAV conversion and chiller stage sequencing. ECC improvements include static pressure reset, variable speed pumps, and replacement of the currently broken chiller#2 by a smaller chiller with good part load efficiency at low lift temperatures. non-computer-related work without undue disruption of their productivity. Many of these additional reductions would be controlled manually. Occupants could be notified by email, phone broadcast, or over a public address system. Some advance training and periodic "fire drills" will be necessary in most situations to implement this sort of curtailment strategy effectively. The ability to measure the response during such occupant-implemented load curtailment may be key to its effectiveness. A third curtailment measure that can be implemented involves further reduction in cooling capacity, either by direct control or by raising room temperature (and humidity, if implemented) set points. The setpoint changes can be abrupt or gradual, depending on the curtailment response desired. The occupants will experience loss of comfort in either case, and the amount of additional capacity reduction, and its duration, will be limited by occupants' tolerances for elevated temperature and humidity levels. The fourth, and most difficult, curtailment measure requires control functions that anticipate curtailment by anywhere from one to sixteen hours, and increase cooling capacity modestly during this pre-curtailment period so that zone conditions are as cold and dry as can be tolerated immediately before the curtailment period and the thermal masses of building structure and contents are at or even below this minimum tolerable temperature. With such a favorable initial state, the reduction in cooling capacity and its duration can be made significantly larger—i.e., the amount of cooling capacity that can be shed during the curtailment event is significantly increased. There are at least three distinct schemes for implementing the fourth (precooling) measure as a retrofit: - 1) Night cooling (outside air with or without chiller operation) - 2) Extended period of reduced setpoint (starting the day with a lower setpoint or ramping it down gradually during the pre-curtailment period) - 3) Short period of reduced setpoint before the anticipated load shedding time². **Peak Shifting Strategies.** *Curtailment* is a short-term mechanism to prevent aggregate load from exceeding generation capacity. Curtailment programs usually provide no direct incentive for efficient operation. Utilities have used (extensively in the last two decades) demand- and time-of-use- (TOU) based rate structures, on the other hand, to provide longer-term limits on peak loads. *Peak-shifting* is a customer response that typically benefits both the utility and the customer under a time-of-use- or simple demand-based rate structure³. The incentive to improve energy efficiency, although often ignored by cream skimming measures, does exist under TOU rates. Night cooling is a peak shifting strategy that is well suited to office buildings and similar air-conditioned buildings in climates where cool nights and significant daytime cooling loads coincide through much of the year. Night cooling can save energy by using ambient conditions (cool night air) to remove heat from the building structure and ² For lunch-hour precooling to be most effective, occupants should be trained to turn off lights and other unnecessary equipment before going out—at least on days when curtailment can be anticipated. If baseload is not so reduced, a new building peak load may result. Moreover, if many buildings were to adopt lunch-hour precooling, the utility peak might actually be shifted from mid-afternoon to the lunch hour. ³ "Real-time" pricing with 24 hour advance rate notification is another effective rate structure that has been tested, and appears to have an assured future, in electric utility markets. contents or by using forms of mechanical cooling that are particularly efficient under night cooling (low lift, small load) conditions. The maximum usable cooling capacity stored on a given day is proportional to the normal zone cooling setpoint minus the thermal capacitance weighted average of contents and structure temperatures at the start of occupancy. The actual capacity is roughly (but not exactly, because the envelope temperature field is affected by outdoor, as well as indoor, conditions) proportional to the change in the thermal-capacitance-weighted average of contents and structure temperatures between start and end of occupancy. Stored capacity is limited in four ways: total thermal capacitance, rate of charge/discharge, night temperature, and comfort constraints. Within the framework of these basic limitations, however, there are a number of control strategies that can be used to implement night cooling. Constant Volume(CV) Precooling. The simplest strategy is to cool the building at night whenever outdoor temperature is below return air temperature and to modulate the cooling rate to just maintain the minimum
comfortable temperature (MCT) until occupancy. On warm nights there may be no cooling, on mild nights the minimum comfortable temperature may not be reached. This strategy is suboptimal for two reasons: no part of the mass can ever be cooled below the MCT and the cost of fan energy has not been considered. CV Delayed Start. The simple strategy can be improved by running the fan fewer hours at night. The objective in this strategy is to reach the MCT not too long before occupancy and, on days with little cooling load, to not reach MCT. Implementation is relatively simple because there is only one variable, start time, to be determined each night. CV Subcooling/Tempering. Delayed start is still not optimal because the potential to cool part of the mass below MCT is not exploited. A third CV strategy, therefore, add another variable, the tempering time. With this strategy the optimal night cooling start and stop times are determined each day. Constant Volume Objective Function. The foregoing strategies have been described in terms of mass state at start of occupancy. However this state is not observable and, in any case, is only indirectly related to the objectives of minimizing plant demand and energy costs. An objective function that represents daily electricity cost will therefore be used. For the most elaborate CV strategy, daily cost can be minimized by enumerating all possible start and tempering times and comparing total daily cost for each⁴. Variable Volume Precooling. The fan energy required on any given day can be further reduced by modulating fan speed during the night cooling phase. This is a much more difficult optimization problem because any sense in which daily cost is monotonic with fan speed in a given hour is lost. Two approaches will be used to make the problem tractable: discretization of fan speed and application of a fan modulating function in which gain is determined daily by optimizations analogous to the CV-delayed-start and CV-tempering strategies. ⁴ In practice, a one hour time step is convenient and reasonable in terms of control resolution. Also, complete enumeration is found to be unnecessary. One starts with the earliest start time and shortest (zero) tempering time. Tempering time is increased until daily cost stops decreasing. The process is repeated with progressively later start times until the daily cost stops decreasing with lateness of start time. The thermal response of the envelope and contents is embedded in the objective function. It is important that the thermal response function represent the building being controlled. A key result of this task is a robust method of obtaining the appropriate model based on actual thermal response as measured by, e.g., the HVAC control system and NILMs installed at the service entrance and HVAC subpanel. The technical approaches for characterizing envelope thermal response and for assessing the potential for curtailment and night precooling are developed after a brief digression on instrumentation of the test buildings. **Instrumentation.** Two NILM installations were made in each building, one to track HVAC (chillers, fans, pumps), the other to track whole building (lighting, plugs, other non-HVAC) loads. Each NILM, except at the ECC service entrance, is shadowed by a K20-6 (traditional end-use metering) logger with one-minute integration intervals. The K20-6 loggers serve to monitor the non-power variables needed to properly control load shedding activity and analyze the effectiveness and comfort impacts of such actions³ as well as to verify NILM end-use disaggregation. One K20-6 logger can monitor 16 enduse circuits, 16 status or pulse channels, and 15 analog channels. The electrical end-use channels are documented in Appenices A and B. Return air temperature and humidity are measured in each building to provide an estimate of average zone conditions. The return temperature is typically a biased estimate⁶ of average zone temperature when zone air returns through ceiling plenums because most of the heat from lights is added to the air as or after it enters the ceiling plenum. Room temperatures in selected zones (Tables 1 and 2) are monitored by unobtrusive battery-powered microloggers. The loggers sample temperature at 2 Hz and the sample averages are recorded at 5-minute intervals. Data storage capacity is 24 days; data are retrieved as needed to characterize envelope response and assess test results. Coil air-side temperature rise is measured in the ISD hot and cold decks and net airhandler temperature rise is measured in ECC. (Installation at the ECC chilled water coil was impractical because of the very large size (~12' x 36') of the coil face). Air-side temperature differences, measured by a thermopile with multiple upstream and downstream junctions distributed over the projected coil face area, determine sensible cooling capacity. The thermopile puts out a very low level signal (about 50 uV per Kelvin per pair of junctions) that is amplified by an auto-zeroing op-amp configured for the appropriate gain (200 to 2000 depending on the number of junction pairs in the thermopile and the maximum temperature difference expected). The op-amp output is connected to a K20-6 analog input channel. (K20-6 input range is fixed at 0 to 5V). ⁵ The variables needed for control, including the end-use loads that will be output by future commercial versions of the NILM, would normally be monitored by the control system. Prototype NILMs may be interfaced to control systems in one or more of the project sites after the effectiveness of load shedding has been demonstrated. However, for the initial tests control and monitoring of load shedding actions and responses will be implemented independently. ⁶ The ideal sensor measures what the occupant perceives, T_{occ}, which is a weighted average from head to toe at whatever location the occupant chooses to occupy at a given time. A single fixed sensor can only provide an estimate, T_{sense}, of occupant-percieved temperature. In the most general linear model $T_{\text{occ}} = C_0 x + D_0 u$ and $T_{\text{sense}} = C_s x + D_s u$. These relations show that there is at least the possibility of obtaining a better estimate of T_{occ} from T_{sense} via a state observer. Table 1. ISD zone temperature micro-logger locations: | Floor | Wing | Side | Dept. | Room | Serial No | Comment | |-------|------|------|-------|------|-----------|--| | 0 | S | Core | | | 522639 | Mid open office; lost after 2003.01.24 | | 1 | N | Core | | | 332632 | Mid open office | | 1 | S | Core | | | 495219 | Mid open office, Ron's cubicle | | 2 | N | E | | | 332635 | Private office | | 2 | N | Core | | | 495190 | On T-stat outside west private office | | 2 | S | W | | | 495213 | Private office, Susan Lopez | | 2 | S | Core | | | 522646 | Mid open office | | 3 | S | Core | | | 522644 | Mid open office, replaced 2002.06.26 | | | | | | | 500862 | | Table 2. ECC zone temperature micro-logger locations: | Floor | Wing | Side | Dept. | Room | Serial No | Comment | |-------|------|------|-------|------|-----------|---------------------------------------| | G | N | core | | 0101 | 332630 | sheriff (reception and open office) | | L | N | core | | | 495205 | large open office | | 2 | N | W | | 2700 | 495199 | large open office near phone closet | | | | | | | | T2N4 | | 2 | Е | N | | | 332268 | large private office (Jo Schiff) | | 3 | Е | core | 406 | | 332633 | court room converted to arts & crafts | | 3 | N | core | | 3511 | 522461 | | | 4 | Е | S | | 400C | 522645 | four-person office (Angela Smith) | | 4 | N | core | 417 | | 522637 | courtroom | | 5 | Е | core | 421 | | 522640 | courtroom (Judge John L.Henning) | | 5 | C | S | | Hall | 522638 | on T-stat near copy machine & | | | | | | | | stairwell | | 5 | N | core | | 424 | 332631 | courtroom | | 6 | N | | | | 522643 | three-person office and reception | | | | | | | | (Lisa Romero/Ann Fragraso) | Boiler run times at each firing stage are monitored by installing relays in parallel with the boiler gas valves. The relays provide contact closure inputs to the K20-6 loggers that monitor thermal loads in each building. Note that boiler run time is the primary measure of heat supply in buildings with reheat coils (ECC) and is a redundant measure in buildings with central heating coils (ISD). The temperature and relative humidity (RH) of return, mixed and supply air are monitored by RTDs and HyCal RH sensors in the ECC. Weather is monitored at the Communications building. Outdoor temperature is measured by an RTD mounted in a radiation shield and solar radiation is measured by a LiCor pyranometer mounted on the wind cross-arm. Wind is measured by a 3-cup anemometer and an active (op-amp-based) rectifier to convert the AM signal to dc. Barometric pressure is measured by a Setra 207. Direct and diffuse components of solar radiation are determined by a shadowband pyranometer employing a LiCor model PY-200 detector and controlled by a CR10 logger. Characterize Envelope Thermal Response. Heat transfer and storage in the building structure and contents is governed by the diffusion equation $$\frac{\partial T}{\partial t} = \alpha \nabla^2 T \quad (3-D)$$ $$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \quad (1-D)$$ $$where \quad \alpha = \frac{k}{\rho c_p}$$ (1) In steady-state, one-dimensional diffusion, the second space derivative must be zero because the first time derivative is zero. But the first space derivative is a constant given by Fourier's law: $$\vec{q} = -k\nabla T \qquad (3-D)$$ $$q_x = -k\frac{dT}{dx} \quad (1-D)$$ (2) Applied to a wall (or any "thin" envelope) in steady state: $$Q_z + u(T_y - T_z) = 0 (3)$$ where T_x may be either exterior surface or sol-air temperature, T_z , is zone temperature, and Q_z is net heat input. With multiple walls: $$Q_z + \sum_{w}^{W} u_w (T_w - T_z) = 0 (4)$$ Note that sum of
T-coefficients equals zero explicitly in this, the steady state, case. Now consider the discrete-time, linear, time-invariant system: $$B_0^n(\phi_z, Q_z) + B_0^n(\theta_w, T_w) - B_0^n(\theta_z, T_z) = 0$$ (5) where $$B_0^n(x, y) = \sum_{k=0}^n x_k y(t - k)$$ Note that one coefficient can be assigned an arbitrary value; it is convenient to let $\varphi_z = -1$. To satisfy the steady state response we must have: $$\frac{\sum_{k=0}^{n} \theta_{w}}{\sum_{k=0}^{n} \phi_{z}} = \frac{\sum_{k=0}^{n} \theta_{z}}{\sum_{k=0}^{n} \phi_{z}} = u_{w}$$ (6) In the steady-state formulations (3, 4) the sum of temperature coefficients equals zero by definition but in the discrete time (DT) dynamic model formulation (5) the constraint $\Sigma\theta_w = \Sigma\theta_z$ must be somehow enforced. The DT model (5) can be evaluated recursively for Q_z or T_z as follows: ⁷ if sol-air temperature is used the exterior film resistance must be included in the multi-layer wall for $$T_z$$: $\theta_{z,0}T_z = B_0^n(\phi_z, Q_z) + B_0^n(\theta_w, T_w) - B_1^n(\theta_z, T_z)$ (7) (that is, T_z = RHS expression divided by $\theta_{z,0}$); for $$Q_z$$: $-\phi_{z,0}Q_z = B_1^n(\phi_z, Q_z) + B_0^n(\theta_w, T_w) - B_0^n(\theta_z, T_z)$ (8) With $\varphi_z = -1$ eqn (8) becomes: $$Q_z = B_1^n(\phi_z, Q_z) + B_0^n(\theta_w, T_w) - B_0^n(\theta_z, T_z)$$ (9) An expression for Q_z like (9) is known (Seem 1987) as a comprehensive room transfer function (CRTF). We will call the expression for T_z (7) an *Inverted CRTF*. There are additional conditions (constraints) the coefficients must satisfy for these models to be physically (thermodynamically) plausible. To see this we start with the fact that, for zone-side responses, the system can be represented by four transfer functions. In the time (z-transform) domain we have: $$\frac{q_z}{T_z} = \frac{B_0^n(\theta_z)}{B_0^n(\phi_z)} \tag{10}$$ $$\frac{T_z}{q_z} = \frac{B_0^n(\phi_z)}{B_0^n(\theta_z)}$$ $$\frac{q_z}{T_w} = \frac{B_0^n(\theta_w)}{B_0^n(\phi_z)}$$ (12) $$\frac{T_z}{T_w} = \frac{B_0^n(\theta_w)}{B_0^n(\theta_z)}$$ (13) Relations (10,12) represent the CRTF, illustrated in Figure 2a; (11,13) represent the inverted CRTF, illustrated in Figure 2b. The roots of the denominators correspond to the eigenvalues, λ_k , and time constants, τ_k , of the system as follows: $$\ell n \left(\frac{1}{r_k}\right) = \lambda_k \Delta t \tag{14a}$$ $$\ell n(r_k) = \frac{\Delta t}{\tau_k} \tag{14b}$$ $$\prod_{k=1}^{n} (r_k - B) = \frac{1}{x_n} \sum_{k=0}^{n} x_k B^k$$ (15) For diffusion processes, the characteristic frequencies, or eigenvalues, λ_k , must be real and negative, corresponding to time constants, $\tau_k = -I/\lambda_k$, that are real and positive. Note that the roots of x (θ_z or ϕ_z) are monotonic in both τ and λ . It has also been shown [Hittle and Bishop 1983] that the zone flux and zone temperature response function pole locations (characteristic frequencies) must alternate along the real axis. That is, if the roots of θ_z , $[\lambda_{\theta k}]$, and the roots of ϕ_z , $[\lambda_{\phi k}]$, are each presented as ordered sets, then together they must satisfy: $$\lambda_{\theta l} < \lambda_{\phi l} < \lambda_{\theta 2} < \lambda_{\phi 2} < \dots < \lambda_{\theta n} < \lambda_{\phi n} \tag{16}$$ Unless we constrain the coefficients of the transfer function denominators in some way, the standard linear least squares parameter estimation process is very likely to return one or more infeasible eigenvalues. Figure 2a. Comprehensive room transfer function (CRTF) model Figure 2b. Inverted CRTF model **Model Identification.** The foregoing discrete-time, linear simulation model (5) can, in principle, be obtained from observations of thermal response under a range of (zone heat rate and sol-air temperature) excitations by applying linear least squares. However, unconstrained least squares minimizes the model-observation deviations without regard for the thermodynamic constraints previously noted. We therefore normalize temperatures by subtracting current zone temperature (or one of the sol-air temperatures) from all the other current and lagged temperatures. This eliminates the current zone (or sol-air) temperature term, reduces the order of the least squares problem by one, and results in a solution that satisfies the constraint in question. The constraints represented by eqns (14-16) cannot be implemented in such a simple manner. However, a formulation that fits a standard bounded search model is possible. From eqns 14 and 16 we can write the constraint as $$r_{\theta l} > r_{\phi l} > r_{\theta 2} > r_{\phi 2} > \cdots > r_{\theta n} > r_{\phi n} \tag{17}$$ Then we can define a new search vector, x, each element of which has simple bounds, 0 < x < 1 from which the roots can be evaluated recursively: $$r_{\theta l} = x_{\theta l} \qquad 0 < x_{\theta l} < 1$$ $$r_{\phi l} = x_{\phi l} r_{\theta l} \qquad 0 < x_{\phi 2} < 1$$ $$r_{\theta 2} = x_{\theta 2} r_{\phi l} \qquad 0 < x_{\theta 2} < 1$$ $$r_{\phi 2} = x_{\phi 2} r_{\theta 2} \qquad 0 < x_{\phi 2} < 1$$ $$\vdots$$ $$r_{\theta n} = x_{\theta n} r_{\phi n-1} \qquad 0 < x_{\theta n} < 1$$ $$r_{\phi n} = x_{\phi n} r_{\theta n} \qquad 0 < x_{\phi n} < 1$$ $$(18)$$ There are two useful properties, besides reducing the multi-variable constraints (16) to a set of simple bounds on individual variables (18), that arise from this formulation. First, we note that $x_{\theta l}$ corresponds to the largest time constant and a reasonable upper limit can usually be estimated. Second, minimum spacing of time constants can be imposed by using a lower bound that is greater than zero and an upper bound that is less than one. Implementation of the foregoing model identification formulation, coded as a Matlab script and a function called by Matlab's built-in bounded, nonlinear least squares routine, *lsqnonlin*, are presented in Appendix C. Application to a test case is also documented. **Assess Peak Shifting and Load Shedding Potentials.** Load shedding potential is a function of many variables. However these may be reduced to three building/occupancy characteristics and one control parameter: - 1) aggregate magnitude of operating loads (primarily lighting and plug loads) that can be shut off *at the time that load curtailment is called for*; - 2) cooling plant efficiency (that is, what is the reduction in HVAC plant power that can be realized per kW reduction in lighting and plug loads); and - 3) potential for thermal storage within the conditioned space (determines what additional reduction in cooling capacity can be achieved). In the foregoing list, it is the third building characteristic that determines the relation between cooling capacity reduction, duration of curtailment, and comfort impact. The maximum sacrifice in comfort that can be tolerated will be decided in advance by managers or facility operators at a given site. The remaining control variables for a curtailment event are the amount (reduction in kW) and duration. The impacts of all gains will have been established by the model identified in the Envelope Thermal Response task. Thermal responses to the shedding of controllable loads is estimated by using the model in a transient simulation. Various simulations may be run to assess aggregate impacts on total load at the service entrance and the relation between comfort sacrificed and level of load reduction achieved. The sensitivity of load shedding potential to weather and occupancy are established by modeling building thermal response with various levels of cooling capacity reduction. The relation between capacity reduction and duration are established by tracking the simulated zone conditions over time until the comfort threshold is violated. The load reduction impacts may be determined for a range of typical weather conditions and occupancies. For peak shifting, the annual impact is estimated by using the thermal response model in a transient simulation driven by 8760 hours (365 days) of TMY2 weather data. The L.A. weather parameters, both historical and TMY2, are documanted in Appendix D. Internal gains and part load efficiency curves are derived from ISD and ECC data in Appendix E. The annual bill is obtained during simulation by the billing algorithm documanted in Appendix F. Test Curtailment Control Strategy. A summer load shedding protocol proposed by Haves and Smothers [Haves 2002] provides a number of load shedding scenarios. All scenarios require heat to be completely shut off to eliminate the inadvertent heat gains (poorly insulated pipes, stuck valves, etc.) that inevitably exist in real world distribution systems. The ideal method of cooling plant modulation is to raise all zone setpoints gradually by the same amount. The practical approximation given by Haves is to raise all setpoints abruptly by the same amount. This will cause chillers to shut down for 30-60 minutes in most buildings. Since the L.A. test building control systems do not provide a way to raise zone setpoints simultaneously, we simply shut down the chillers. This has the same effect up until the time when one or more zones reaches its new setpoint. An alternative approach for ISD is to shut down one or more compressors or, for ECC, to reduce chiller capacity by modulating the inlet vanes. Such capacity modulation actions let us trade off load reduction against duration. The most extreme action given by the Haves protocol is by no means the most extreme electric load shedding scenario possible nor does it represent the most extreme thermal excitation possible. Rather, the protocol aims to provide significant load reduction with modest comfort impact over short (1- to 4-hour) time frames. In the case of ECC, the test was implemented by disabling HVAC equipment in the sequence indicated below: - 1) supply fan speed frozen at current setting (32Hz) - 2) return fan speed frozen at current
setting (25Hz) - 3) hot water pumps to OFF - 4) chilled water pumps to OFF - 5) chiller and tower pumps and fans turn off automatically after step 4. ISD cooling load was shed, as at ECC, by turning off hot and chilled water pumps. The chillers and cooling towers go down automatically upon loss of chilled water flow. A log of load shedding activities is correlated with NILM measurements to quantitatively assess the impacts in terms of both load reduction and loss of comfort for occupants. The NILMs monitor electric load changes effected by occupants and plant operators during curtailment events and the K20-6s and microloggers monitor weather and zone comfort conditions as well as coil loads. Data obtained during load shedding are analyzed to determine the following: Reductions, from baseload, achieved by curtailment of lighting and plug loads; Reduction, from model predicted HVAC load, achieved by the combination of lighting and plug load curtailment, and further reduction in cooling capacity; Disaggregation of HVAC load reduction by the two above-mentioned actions; **Test Night Precooling Strategy**. The constant volume precooling strategies can be tested in ISD and the variable volume strategies can be tested in ECC. Since model-based optimal control can not be implemented on the existing control systems the tests will be performed manually by an MIT research assistant and site contact as operators. For ISD, the *CV Subcooling/Tempering* strategy will be implemented in the conventional way, with both supply and return fans operating, and in a low fan energy mode with windows opened and only the return fan operating. For ECC the *Variable Volume* cooling strategy is not practical as a manually implemented strategy. A suboptimal variant will be tested instead in which the fans are operated at a reduced but fixed static pressure and the terminal boxes are allowed to modulate air flow to each zone. In both tests, the economizer dampers will be held open manually until outside air exceeds return air on the constant comfort line and the chillers will be held off until average or least comfortable zone conditions reach a corresponding predetermined comfort limit. ### **Outcomes** Useful results obtained from the subtasks described above in the technical approach section are presented here. This section describes the training data and resulting thermal response models, the assessment by simulation using these thermal response models and the results of curtailment and precooling field tests. Incidental encounters with plant faults are also reported. Field tests included summer afternoon load shedding sequences and summer and winter pre-cooling sequences in both buildings. **ECC Load-Shedding Test Results**. Load curtailment tests followed the main elements of the Haves protocol, described earlier. The 25 June 2002 test was effected by simply turning off the chilled-water and hot-water pumps. The chiller (immediately) and cooling tower (within one minute) then shut down automatically. The averages of precurtailment temperatures shown in Figure 3 were 72.05°F for zones and 72.16°F for return air; both were very steady (standard deviation <0.1°F) over the 100 minutes preceding the test. Figure 3. Temperatures and HVAC motor loads during ECC load shedding test. It is not surprising that the return air is warmer than the average temperature across zones because return air is taken from the ceiling level and usually picks up some heat from ceiling lights as it leaves a room. Both temperatures begin to rise almost from the instant—indicated in Figure 3 by the 400A (330kVA) drop in motor control panel (MCP) load at 16:48—that the plant was shut down. Both rise along similarly shaped trajectories after the chiller stops but the return air temperature rises more rapidly. This, too, is not surprising because the zone temperature sensors were placed on file or desktop cabinets or on wall thermostats where the proximate slower responding surface temperatures affect the measurements by radiant coupling. The zone sensors are indicating something close to "operative temperature" defined [ASHRAE 2001] as the average of air temperature and mean radiant temperature (MRT). The zone average and return air temperatures after 53 minutes without cooling were 74.65 and 76.89°F. When the chiller is turned back on, the return air temperature again responds more quickly than the zone sensors and we see that it approaches within 0.1°F of the pre-test temperature 50 minutes later. At this point the return temperature is 0.8°F below the sluggishly responding average zone temperature. The return air temperature drops below the pre-test value (overshoots in the direction of initial response) after the chiller is restarted--a direct result of slow zone thermostat response. Fan power rises gradually during curtailment as air flow increases to satisfy terminal units demand for more cooling and static pressure is maintained. The pressure setpoint could be reduced to prevent this. **ISD Load-Shedding Test Results.** ISD cooling equipment was shut down, as at ECC, by turning off hot and chilled water pumps. The chiller and cooling tower shut down automatically. Prior to shut down, return air and average zone temperatures were 74.8 and 72.0 ±0.1°F, as shown in Figure 4. The higher return-air temperature may be partly caused by air leaking from the hot deck. Also note in Figure 4 that the return air temperature is less responsive to the step change than the average zone temperature. Supply duct leaks alone could only account for this if they were on the order of 50% of supplied air; thermal coupling to the underside of the floor decks also contributes to attenuation of rapid changes in return air temperature. Over half the total building load (250kVA, shown in Figure 5) was cut during the test. A further 12% was cut when the fans were shut off at 5:30 pm. Average zone temperature rose 5.5°F in the first 40 minutes (fans on) and 0.5°F in the next 40 minutes (fans off). Zone temperature responds quickly after the test, in part because the hot deck was not restored until much later; return air temperature responds slowly. It is not clear why, with the large zone temperature rise, the chillers did not return to high capacity at the end of the test. Figure 4. Temperatures and HVAC motor loads during ISD load shedding test. **Zone Conditions for ECC.** Zone temperatures (transient behavior and dispersion among zones) observed during the June 2002 site visit were analyzed to assess the consistency of zone thermal conditions. The zone temperatures, their average, and the standard deviation across zones, are plotted in Figures 5 and 6. Note that loggers resided together in a bag prior to deployment (2002.06.21 15:00-16:30 PDT), thus the data taken prior to deployment is only useful for showing that the loggers track each other quite well. Figure 5. Children's Court micro-logger data from launch time (2002.06.19 13:00 PDT) through first download/relaunch (2002.06.26 16:00-16:45 PDT). Figure 6. Children's Court zones before, during, after the chiller OFF step test of 25 June **Children's Court Precooling.** A second ECC precooling test was completed 23 January 2003 in a week of mixed weather and building occupancy. Monday, 20 January, was sunny, Tuesday hazy, Wednesday and Thursday moderately overcast. Temperatures were typical for January except Wednesday morning was about 5°F below normal. The building was closed to the public on Monday for Martin Luther King Day. The chiller was turned off 17:00 PST on Wednesday afternoon and the supply fan static pressure (SP) setpoint was reduced from 2.2 to 0.5 inches (water gauge) at 01:00 early Thursday morning. The setpoint was restored to 2.2 inches at 07:00 and the chiller was restored at 10:15. The HVAC and building electrical loads are shown in Figure 7 and the temperature trajectories are plotted in Figure 8. The reason for large supply fan loads from 10:00 to noon Monday and Wednesday is unknown; some possibilities are a change in zone setpoints, a SP sensor fault, or some unexplained meddling with SP setpoint schedule. Note that the mean supply air temperature doesn't change significantly even though its fluctuations are greatly diminished. Chiller power increases to maintain supply air temperature with the increased supply air flow rate. Chiller pump loads (not shown) are steady. Zone temperatures drop as would be expected in response to a step change in cooling capacity. Also note that the supply air temperature control loop is poorly tuned for part-load operation. The result is oscillation of the coil control valve, reflected in chiller power, at about 2.2 cycles per hour. The amplitude of these oscillations decreases during times of high cooling load (high supply air flow rate). The daily mean conditions, loads, and room temperatures averaged across 12 zones are summarized in Table 3. Because the chiller operates inefficiently at part load, there is little variation in average chiller power except on the day of the precooling test, when it was completely shut off Figure 7. ECC electrical loads for 20-23 January 2003. Figures 8. ECC temperatures; fan inlet velocity pressure and boiler duty cycle signals. Table 3. 24-Hour average conditions at Children's Court for 20-23 January 2003 | | | Monday | Tuesday | Wednesday | Thursday | |-----------------------|------|--------|---------|-----------|----------| | CtowerFan (CT1) | kW | 1.8 | 1.3 | 1.3 | 1.5 | | CndWpump (P3) | kW | 28.2 | 28.3 | 25.6 | 10.3 | | ReturnFan (R1,R2) | kW | 0.3 | 0.3 | 0.3 | 5.3 | | SupplyFans (S1,S2) | kW | 100.4 | 90.6 | 81.5 | 74.9 | | HWpumps (P5,P6) | kW | 3.8 | 3.8 | 3.5 | 1.9 | | ChWpump (P1) | kW | 23.6 | 23.7 | 22.0 | 9.1 | | Chiller1 | kW | 236.7 | 222.1 | 203.5 | 99.6 | | MCP feed | kW | 394.8 | 370.0 | 337.6 | 202.7 | | C-H main | kW | 415.2 | 465.7 | 462.4 | 306.5 | | Tra | °F | 67.5 | 67.3 | 68.6 | 69.2 | | Tmixed | °F | 65.2 |
63.8 | 64.6 | 63.9 | | Tsa | °F | 55.8 | 55.8 | 56.6 | 59.7 | | Rhra | % | 49.9 | 52.8 | 51.6 | 50.3 | | Rhmixed | % | 44.8 | 51.4 | 45.0 | 40.8 | | Rhsa | % | 70.8 | 74.3 | 73.2 | 65.2 | | Tz (Hobos) | °F | 71.0 | 71.4 | 71.5 | 71.7 | | Tamb (outside) | °F | 60.1 | 58.5 | 57.2 | 61.9 | | S (plain LiCor) | W/m2 | 154.1 | 114.2 | 75.9 | 77.1 | | Total (unshaded) | W/m2 | 154.1 | 114.4 | 75.9 | 77.7 | | Diffuse1 (shaded) | W/m2 | 27.7 | 55.9 | 55.3 | 62.3 | | Prt'l (partly shaded) | W/m2 | 136.1 | 101.8 | 69.8 | 73.1 | for 16 hours. The chiller average power Thursday was thus reduced from over 200~kW to 100~kW. The associated average cooling tower and chilled water pump loads were also reduced substantially from 49 to 21 kW. Supply fan power is about 16kW (4 kW daily average) during the precooling phase and about 112 kW during the day. Baseline chiller and pump power are very high Monday through Wednesday because no unoccupied periods were scheduled on the control system. The baseline daily average would have been about 150 kW for the chiller and 30 kW for pumps under a normal night lockout schedule. Estimated savings from this reduced baseline are, nonetheless, a considerable 45% which represents about \$50k/year. The extra fan energy (compared to a fan-off-at-night baseline) is only about 10% of chiller and pump savings thanks to the reduced static pressure during precooling. **ISD Building Precooling.** The test was completed Wednesday, 22 January. In contrast to Children's Court, the ISD Building was partly occupied on the preceding Monday, 20 January 2003. Temperature trajectories are plotted in Figure 9 and HVAC and building electrical loads are plotted in Figure 10. For this precooling test the chiller was turned off 18:00 PST on Tuesday afternoon and restored at 13:50 the following day. The windows were opened at 21:30 Tuesday and the return fan was started. Return temperature dropped from 73.2 to 69.0°F and average room temperature dropped from 73.5 to 64.3 F during the precooling period, which ended at 05:30 Wednesday morning with closing of the windows. The supply fan started at 05:40 per its normal schedule. The exhaust damper was closed and the return damper opened from 07:00 to 8:45 allowing the occupied space temperature to rise from 67.9 to 71.7°F. The space was thus effectively in a tempering mode from 05:30 to 08:45. This amount of tempering is more than was necessary; tempering would have ended at 07:20 when the zone reached 70°F, had the controls been properly automated. Average zone temperature reached 74°F at 11:45am. The chiller remained locked out until13:50, by which time the zone temperature had reached 75.1°F. The return fan remained on through 24 January but the windows were not opened that night. This resulted in limited precooling Thursday morning by outside air being drawn through the hot and cold deck systems even though the supply fan was off. Note that return Figure 9. ISD temperatures and electric loads during week of the precooling test. temperature approaches room temperature progressively more closely from Monday (after the previous week and weekend in which there was no precooling) to Thursday. Several days of precooling are needed to cool the building's floor deck structures from their under (ceiling plenum) sides. It is fair to conclude that 1) a one-day test is not sufficient to demonstrate the full potential and 2) precooling on Saturday, as well as Sunday, night may be cost effective. Chiller cycling is apparent in Figure 9. Details of this cyclic behavior are shown to better advantage on the expanded time scale of Figure 10. One may conclude that the cycling could be largely eliminated by modifying the compressor sequencing logic so that compressors come on one by one, rather than in pairs. The response to precooling is presented on an expanded time scale in Figure 11 where the cycling tendency, even under the heavy zone temperature pull-down load that existed when the chillers were finally started at ~14:00, can be clearly seen. The daily mean conditions, loads, and room temperatures averaged across six zones are summarized in Table 4. The ISD chillers, in contrast to the Children's Court chiller, operate more efficiently at part load (in spite of the cycling). The average chiller input is therefore significantly lower on cooler and partial occupancy days. Average chiller power on the day of the precooling test is, nevertheless, less than half of the average power used on the other three days. Fan power, on the other hand, changes little from day to day except that average return fan power is higher Tuesday through Thursday because it was run during certain unoccupied hours on all three of those days. On the day of precooling, average chiller power was reduced from ~22 to 8.3 kW. Associated average cooling tower and chilled water pump loads also dropped substantially from ~8 to 3.7 kW. Average return fan power increases from ~7 to almost 13 kW. Net average savings are therefore about 12 kW from a baseline of 58 kW representing about \$15,000/year. Precooling by supply fan would reduce savings by roughly half these amounts. Figure 10. Short segment of Figure 9 showing compressor cycles (1m-average loads) 20 Figure 11. One-day segment of Figure 9 showing precooling test details. Table 4. Daily Summary ISD Building Data for 20-23 January 2003 | - | - | Monday | Tuesday | Wednesday | Thursday | |-----------------------|-------|--------|---------|-----------|----------| | Chiller1 | kW | 12.45 | 13.88 | 5.58 | 9.87 | | Chiller2 | kW | 8.97 | 10.18 | 2.74 | 6.32 | | ChWpumps | kW | 2.57 | 2.98 | 1.16 | 2.37 | | CtowerFans | kW | 4.45 | 5.16 | 1.99 | 4.10 | | CndWpumps | kW | 1.15 | 1.14 | 0.54 | 0.81 | | ReturnFan | kW | 6.94 | 8.56 | 12.80 | 9.96 | | SupplyFans | kW | 18.19 | 18.27 | 18.19 | 17.93 | | Hwpump | kW | 0.89 | 0.89 | 0.87 | 0.88 | | HVAC feed | kW | 58.14 | 63.94 | 46.02 | 54.75 | | ISD main | kW | 111.61 | 173.73 | 157.20 | 163.46 | | Tra | F | 67.3 | 69.6 | 72.0 | 69.8 | | Rhra | % | 54.7 | 52.2 | 49.1 | 49.7 | | Thot | °F | 84.0 | 84.5 | 79.1 | 76.3 | | Tcold | °F | 60.2 | 59.6 | 61.8 | 59.9 | | Rhcold | % | 60.5 | 63.7 | 61.5 | 60.3 | | Rhmix | % | 37.5 | 41.4 | 53.8 | 53.3 | | B1lo | s/min | 21.1 | 19.6 | 13.8 | 0.0 | | B2lo | s/min | 35.3 | 34.9 | 33.7 | 35.3 | | B2hi | s/min | 5.5 | 4.6 | 18.6 | 27.4 | | Tz (Hobos) | °F | 71.6 | 72.0 | 70.8 | 72.2 | | Tamb (outside) | °F | 59.4 | 58.5 | 57.2 | 61.9 | | S (plain LiCor) | W/m2 | 154.1 | 114.3 | 76.0 | 77.1 | | Total (unshaded) | W/m2 | 154.1 | 114.4 | 75.9 | 77.7 | | Diffuse1 (shaded) | W/m2 | 27.7 | 55.9 | 55.3 | 62.3 | | Prt'l (partly shaded) | W/m2 | 136.1 | 101.8 | 69.8 | 73.1 | | Barometer | PSIA | 14.59 | 14.61 | 14.64 | 14.59 | **Model Identification.** The discrete-time, linear (CRTF) model developed in the technical approach section will be used to simulate the dynamic thermal responses of the two test buildings. The parameters for each model must therefore be determined by least-squares fit to the monitored conditions and thermal responses of each building. Sol-air temperature and time-shifted zone temperature are converted to temperature differences by subtracting current zone temperature from the other (current and lagged) temperatures. This eliminates the current zone temperature term and reduces the order of the least squares problem by one, and results in a solution that satisfies the constraint on sums of temperature coefficients. The model identified for ISD is in the form of (8) with one thermal capacitance and hour time steps: $$-\phi_{z,0}Q_z = B_1^n(\phi_z, Q_z) + B_0^n(\theta_w, T_w) - B_0^n(\theta_z, T_z)$$ (8) With $\phi_{z,0}$ equal minus one, the least squares solution is $$Q_{z,k} = Q_{z,k-1} + 194.4T_{z,k} - 198.1T_{z,k-1} + 0.2249T_{x,k} + 3.456T_{x,k-1}$$ where T is in °F and Q is in kW. The building load coefficient (UA) corresponding to these estimated model coefficients is 16367 Btuh/°F. The normalized width of each coefficient's confidence interval (CI) is given in Table 5. Table 5. ISD model confidence intervals | Term | Coefficient | CI/lcoefl | |-------------|-------------|-----------| | $Q_{,k-1}$ | 0.7751 | 212.5 | | $T_{x,k=0}$ | -0.2249 | 0.745 | | $T_{x,k-1}$ | -3.456 | 11.3 | | $T_{z,k=0}$ | 194.4 | 109.3 | | $T_{z,k-1}$ | -198.1 | 109.3 | The response produced by the model for ISD is compared to the measured response in Figure 12. Figure 12. Measured and simulated trajectories of ISD net zone heat gain from HVAC air streams, solar radiation and electrical loads. The model identified for the ECC is in the form of (7) with two thermal capacitances and hour time steps: $$\theta_{z,0}T_{z} = B_{0}^{n}(\phi_{z},Q_{z}) + B_{0}^{n}(\theta_{w},T_{w}) - B_{1}^{n}(\theta_{z},T_{z})$$ With $\theta_{z,0}$ equal one, the least squares solution is $$T_{z,k} = .8873T_{z,k-1} + .0991T_{z,k-2} + .2580T_{x,k} - .0323T_{x,k-1} + .0201T_{x,k-2} + .00160Q$$ where T is in °F and Q is in kW. The building load coefficient (UA) corresponding to these estimated model coefficients is 29004 Btuh/°F. This is about twice the UA of ISD, which is reasonable for a much larger, albeit better insulated, building. The normalized width of each coefficient's confidence interval (CI) is given in Table 6. Table 6. ECC model confidence intervals | Term | Coefficient | CI/lcoefl | |-------------|-------------|-----------| | $T_{z,k-1}$ | 0.8873 | 10.8 | | $T_{z,k-2}$ | 0.0991 | 1.2 | | $T_{x,k-1}$ | -0.0323 | 1.0 | | $T_{x,k-2}$ | 0.0201 | 1.0 | | Q | 0.0160 | 3.4 | The response produced by the model for ECC is compared to the measured response in Figure 13. The magnitude of the root-mean-square of the residual, 0.33°F, is comparable to the observation uncertainty but it is visually obvious the the residual is not random. One of the weaknesses of least squares is that it does not penalize structure within the residual time series, only its 2-norm. Figure 13. Measured and simulated trajectories of ECC
indoor-outdoor temperature difference (note $T_{oa} \equiv T_x$). ## **Peak-Shifting Case Study Results.** The night precooling control strategies have been evaluated by using TMY2 Los Angeles weather data to drive the ISD thermal response model. The cooling capacities provided by the chiller plant and by outside air are separately integrated over the year for each case simulated. These numbers and the annual electricity (energy and demand) costs together provide a complete picture of the alternative control strategies described in the Technical Approach section. The base case, no night cooling with the economizer setpoint equal to the mechanical cooling setpoint (74.5°F), is shown in Figure 14. Mechanical cooling represents almost 60% of the total annual load. As the economizer setpoint is reduced, the total cooling load is increased but the annual mechanical cooling share is reduced to about 50% of the total with the most extreme economizer setpoint of 68°F. The cooling shares are not very sensitive to economizer setpoint because there is little daytime economizer cooling potential on days when there would be significant chiller load without economizer cooling. With economizer cooling enabled at night (fan runs whenever zone temperature is above the economizer setpoint and outdoor temperature is below zone temperature) mechanical cooling is immediately reduced by 30% for case 6 (economizer setpoint = mechanical cooling setpoint = 74.5°F) simply by eliminating morning pull down loads. Total annual cooling is immediately increased by 20% in response to lower zone temperatures on many nights. Note, furthermore, that the mechanical share drops significantly (an additional 30%) and total load increases significantly (another 17%) as the economizer setpoint is lowered. These results are shown in Figure 15. Figure 14. No night cooling, cases 1-5. Figure 15. All night cooling, cases 6-10. Figure 16. Delayed-start night cooling, cases 11-15. With optimal nightly delayed-start times, the annual fan energy (hours of fan operation) is greatly reduced, the amount of economizer cooling is moderately reduced, and the amount of mechanical cooling is increased slightly as shown in Figure 16. Total annual cooling numbers are 10-15% lower. However, as shown in Figure 17, there is very little cost savings because off-peak energy rates are relatively low. Figure 17. Annual electricity costs (building total) by time of use, energy, and demand. ### **Conclusions and Recommendations** Thermal and Electric Load Response Models. Real-time estimation of the near-term curtailment resource and control of night precooling both require models of transient envelope thermal response and static plant part-load efficiency [Gordon and Ng, 2000]. The envelope model and identification procedure developed for this project requires several weeks of hourly data for weather (sunshine, temperature, wind), internal gains (lights and plugs), and HVAC (sensible heating and cooling; return air temperature). By forcing the identified model to satisfy applicable thermodynamic constraints, the need for a priori information about the thermal envelope and capacitance of contents and structure is eliminated. This is an important step towards completely autonomous model identification that must be achieved for such model-based control to be successfully commercialized. Second order linear models were sufficient to predict sensible loads and conditioned-space temperatures within the confidence interval of the training data. **Curtailment.** Using an aggressive interpretation of the Haves protocol, the afternoon load shedding tests reduced whole building load by up to 60% (1.2 W/ft² for ECC and 3.6 W/ft² for ISD) and HVAC loads by essentially 100%. Leaving chillers off for one hour resulted in zone temperatures increasing by 2.6 °F for ECC and 5.5°F for ISD and return air temperatures increasing by 4.7 °F for ECC and 2.7°F for ISD. Chiller part-load efficiency is a significant factor in curtailment strategy. With good part-load efficiency a partial reduction of cooling capacity results in significant load reduction but sufficient remaining cooling capacity to extend the duration of a typical curtailment from less than one hour to at least two, and perhaps four hours as required for a single building to qualify for curtailment incentives. If part-load efficiency is such that the chiller must be completely shut down to obtain program-imposed load reduction, the duration will most likely not be sufficient to qualify for incentives. It is this common situation, in part, that has sparked interest of control of buildings in aggregates. Some of the questions this research cannot answer include 1) who can best (in a cost/benefit sense) coordinate building-level load curtailment, and 2) what incentives suffice to engage building owners in load curtailment actions? LA County was initially interested in the program [http://www.pge.com/002_biz_svc/loadmgmt_programs.shtml] that called for curtailment in 100kW, 4-hour blocks. However, after some experience with the costs and benefits, the county has decided not to participate. The model and identification method developed in this project allow a building operator to forecast the load shedding potential (load delta and duration) at a given time. The utility knows its capacity limits, can forecast system wide loads and can thus estimate quite well on any given morning the curtailment trajectory required that afternoon. The curtailment coordinator ideally has both sets of information, as well as the ability to control (directly or via a commitments from building owners) a set of buildings that, in aggregate, represent a sufficient demand responsive resource. Moreover, uncertainties in the forecasts and effectiveness of control require safety margins. The foregoing arrangements represent significant transaction costs for communication and contractual infrastructure. There is also significant cost and uncertainty in measurement and verification. Simple models for allocating incentives are attractive because they appear to involve smaller transaction costs. However, simple models are not adequate for control. Since control is key to the entire program the utility or aggregator might as well use the model that is required for control to more accurately allocate incentives as well. At least the transaction cost of maintaining more than one model is eliminated. **Night Precooling.** Night precooling was shown to reduce annual mechanical cooling energy input by up to 50%. Control of night precooling involves the same building-specific thermal response model that is used for curtailment. Because it is primarily a controls measure, the implementation cost for night cooling is potentially quite low. However, there are some situations where significant modification to air distribution and control systems will be needed. To prevent the initially coolest zones from getting too cold, it is important that terminal boxes be capable of closing fully. This has not traditionally been a design criterion because, in occupied period operation, there is a minimum air setting based on ventilation needs. The ability of the control system to execute the optimization algorithm (Appendix G) is a key issue. Finally, it is necessary that the control system support global zone setpoint changes, either by storing multiple arrays of set points, e.g. "daytime," "night precooling," and "night no cooling," with a schedule determining which array is in effect at a given time, or by allowing a single command to shift all setpoints up or down by a specified amount. There are significant implementation barriers involving energy and associated cost of fan operation and limitations imposed by existing control systems. For buildings with constant volume fan systems, the potential savings for night cooling are an added incentive to convert to VAV. However, fan energy costs are significant even in VAV systems. A scheme to reduce pressure drop and provide additional control over which parts (underside or top of floor deck) of the structure are cooled is presented in Appendix H. **Fault Detection.** A number of faults were identified from the data by inspection. The Children's Court has large temperature variations across zones. The cooling tower fan cycles excessively. One return fan is down and control of building pressure, minimum outside air and economizer cooling suffer as a result. The coordination of building fans, cooling tower fans and the chiller appears to be significantly sub-optimal. Except for the interzonal temperature variations, all of this can be inferred by inspection (potentially automatable) of NILM data. The ISD has serious control faults involving the modulation of chiller and cooling tower capacity. At one point the chiller capacity increased from stage 1 to stage 4 abruptly (<100s). The cooling tower staging setpoints are also incorrect resulting in considerable tower fan cycling. These faults are detectable from NILM data alone. Other ISD faults require analysis of thermal time-series data that are, in general, already monitored in most CV dual deck systems by their existing HVAC controls. Coordination of hot deck temperature and damper position is poor, with the result that simultaneous heating and cooling increases with cooling load. Both dampers (or at least the hot deck damper) should be shut when the fans are off. One of the two boilers should be shut down completely in summer. Control of hot deck temperature is difficult in part because the boiler setpoint temperature is fixed. Some means should be found to prevent the boiler-coil convection loop that develops when pumps and fans are off. Hot- (and possibly cold-) deck duct leakage appear to be excessive. The discovery of HVAC and controls faults is not surprising in light of our experiences in other buildings. Faults that do not result in persistent occupant complaints often go undetected
or, if detected, un-repaired. To have found such a large number of faults within the first few days' of monitored data is, however, quite remarkable. Additional faults have been identified by visual observation. Both ECC and ISD buildings have been operated with supply air duct access doors and pressure relief doors open or exhibiting large leaks. The ISD condensate pan leaks so badly that most of the condensate puddles on the mixed air plenum floor rather than being channeled directly to the building waste-water line. Economizer controls in both buildings suffer from excessively conservative set points and unnecessarily low outdoor air lockout temperatures. #### References ASHRAE. 2001. Handbook of Fundamentals, Atlanta Armstrong, P.R. and P.D. Heerman. 1985. "uP-based hot-wire anemometry," *First National Conference on Microcomputer Applications for Conservation and Renewable Energy*, Tucson, AZ. Braun, J.E. and Nitin Chaturvedi, 2002. "An inverse grey-box model for transient building load prediction," *Int'l J. HVAC&R Research*, 8(1) pp.73-99. Gordon, J.M, and K.C. Ng, 2000. *Cool Thermodynamics*, Cambridge International Science Publishing ISBN 1898326 908. Haves, P., and F. Smothers, 2002. *Guidelines For Emergency Energy Reduction In Commercial Office Buildings* (LBNL Report) Hittle, D.C. and R. Bishop, 1983. "An improved root-finding procedure for use in calculating transient heat flow through multilayered slabs," *Int'l J Heat Mass Transfer*, 26(11) 1685-1693. Luo, Dong. 2001. Detection and Diagnosis of Faults and Energy Monitoring of HVAC Systems with Least-Intrusive Power Analysis. MIT PhD Thesis. Seem, J.E., 1987. Heat Transfer in Buildings, PhD Thesis, UW, Madison. Seem, J E. and J.E. Braun, 1991. Adaptive methods for real-time forecasting of building electrical demand, *ASHRAE Trans*. 1991, vol.97, Part 1, paper# NY-910-10-3, 710-721. http://www.pge.com/002_biz_svc/loadmgmt_programs.shtml (PG&E) http://www.caiso.com/SystemStatus.html (ISO capacity, load forecast, stage notice) ## **Appendix A. ISD Building Description** The ISD Building is a 70,000 ft² structure built in 1973 with a constant volume dual duct HVAC system. The plant consists of two boilers and two four-stage reciprocating chillers. Two NILMs have been installed, one at the service entrance and one at the central fan/chiller motor control panel. Thermal instrumentation includes temperature and humidity of return-, mixed-, hot-deck and cold-deck air. Fan inlet pressure taps measure flow rates at the supply and return fans while thermal anemometers measure "mass velocity" (labeled "rhoV" in the plots) to determine the damper-controlled division of supply air between hot- and cold-decks. Table A-1. ISD Building HVAC Electrical Loads. | | | Circuit & Motor Ratings | | | | | | |------|-----------------------------|-------------------------|------|------|-----|--|--| | Name | Function | Ckt | Amps | HP | rpm | | | | P1 | Chilled water pump 1 | 30 | | 7.5 | | | | | P2 | Chilled water pump 2 | 30 | | 7.5 | | | | | P3 | Condenser water pump 1 | 30 | | 10 | | | | | P4 | Condenser water pump 2 | 30 | | 10 | | | | | P5 | Hot water pump 1 | 15 | | 1.5 | | | | | P6 | Hot water pump 2 | 15 | | 1.5 | | | | | CP1 | Circulation pump 1 | | | 0.5 | | | | | SF | Supply fan | 200 | | 60 | | | | | RF | Return fan | 60 | | 20 | | | | | C1.1 | Chiller stage 1 compressors | | | | | | | | C1.2 | Chiller stage 2 compressors | | | | | | | | C1.3 | Chiller stage 3 compressors | | | | | | | | C1.4 | Chiller stage 4 compressors | 300 | | | | | | | TF1A | Toilet fan 1A | | | | | | | | TF1B | Toilet fan 1B | | | | | | | | TF2 | Toilet fan 2 | | | | | | | | EF1 | Exhaust fan 1 | | | 0.5 | | | | | EF2 | Exhaust fan 2 | | | 0.5 | | | | | EF3 | Exhaust fan 3 | | | | | | | | EF4 | Exhaust fan 4 | | | 0.33 | | | | | EF5 | Exhaust fan 5 | | | 0.25 | | | | | EF6 | Exhaust fan 6 | | | 0.75 | | | | | CAC1 | Control air compressor 1 | | | 1 | | | | | CAC2 | Control air compressor 2 | | | 1 | | | | | | Strip heater, 13kW | | | | | | | Internal Services Department (ISD) Building BIS#7022; LACO#5863Completion date: 1 May 1973 1100 N Eastern AvenueLighting retrofit: 29 November 1996 Los Angeles, CA 90063Floor area net/gross (ft2): 58,826/45,646 Function: OfficesOperating hours: 11 (Monday-Thursday) Heat: two 1.1 Mbtuh (input) gas-fired hot water boilers Cooling: two 2-stage reciprocating chillers Distribution: Dual-duct constant volume system; built-up AHU Electric Utility: SCE, I-6 (interruptible) rate Contact: Ron Mohr Table A-2. ISD Building K20 Channel Assignments (all are A-phase currents). | K20 | 102 | Building K20 Channel Assignmen | | it & Motor R | | CT FS | |---------|---------|--|-----|--------------|------|-------| | Channel | Name | Function | Ckt | Amps | HP | amps | | 2 | P1 | Chilled water pump 1 | 30 | | 7.5 | 25 | | 2 | P2 | Chilled water pump 2 | 30 | | 7.5 | | | 3 | P3 | Condenser water pump 1 | 30 | | 10 | 50 | | 3 | P4 | Condenser water pump 2 | 30 | | 10 | | | 7 | P5 | Hot water pump 1 | 15 | | 1.5 | 10 | | 7 | P6 | Hot water pump 2 | 15 | | 1.5 | | | 6 | CP1 | Circulation pump 1 | | | 0.5 | | | 0 | SF | Supply fan | 200 | | 60 | 150 | | 5 | RF | Return fan | 60 | | 20 | 50 | | 1 | C1B+2B | Chiller stages 3&4 (both chillers) | | | | 300 | | 4 | C1A+2A | Chiller stages 1&2 (both chillers) | | | | | | 6 | TF1A | Toilet fan 1A | | | | 10 | | 6 | TF1B | Toilet fan 1B | | | | | | 6 | TF2 | Toilet fan 2 | | | | | | 6 | EF1 | Exhaust fan 1 | | | 0.5 | | | 6 | EF2 | Exhaust fan 2 | | | 0.5 | | | 6 | EF3 | Exhaust fan 3 | | | | | | 6 | EF4 | Exhaust fan 4 | | | 0.33 | | | 6 | EF5 | Exhaust fan 5 | | | 0.25 | | | 6 | EF6 | Exhaust fan 6 | | | 0.75 | | | 6 | CAC1 | Control air compressor 1 | | | 1 | | | 6 | CAC2 | Control air compressor 2 | | | 1 | | | 6 | | Strip heater, 13kW | | | | | | 8 | LAC | G,1,2 floor lighting (w/retrofit) | | | | 150 | | 9 | DSA | General plug loads | | | | 300 | | 10 | MCAB | Penthouse HVAC loads (CT) | | | | 100 | | 11 | Lift1+2 | Hydraulic elevators | | | | 150 | | 12 | DEA | Emergency loads | | | | 150 | | 13 | LAG | 3 rd floor lighting (no retrofit) | | | | 50 | | 14 | Main | Service entrance (5A piggy back CT) | | | | 1500 | | 15 | MCA | Main HVAC loads | | | | 600 | #### **NILM Load Data.** HVAC loads were cycled on and off, one load at a time, while recording at 120Hz the power, P, and reactive power, Q, fed to the MCC. Second and higher harmonic spectral envelopes were not recorded during these training tests. When interpreting the recorded signals it is important to keep in mind that the spectral envelope is not an instantaneous signal but rather a one-cycle moving average of the selected harmonic (in this case the 60Hz fundamental) of the power signal. Each pump was turned on, allowed to run for about 10 seconds, turned off, and left off for about 10 seconds. This standard *on/off* sequence was repeated five times for each pump. The supply and return fans were operated longer because they have longer start transients. The chillers also produced long *on* cycles because they have a programmed multi-stage sequence control that requires operation at a given stage for a minimum time before switching to the next higher stage. V-sections were fit to all start and stop transients by the interactive Matlab program *vtrain*. The program locates events and allows the user to define the section boundaries and averaging weights used to aggregate points taken from all (or a subset) of the observed transients. The mean values of P and Q and their standard deviations, computed for data points recorded after each load had reached steady state, are presented in Table A-3. The steady state means and standard deviations serve two purposes. The real (P) and reactive (Q) components are used to identify off transitions and the real component is used to estimate energy used by a given load during each of its operating periods. Standard deviations are generally 1% of average load. However, the standard deviations for the two small pumps (P5 and P6) are about 3% of average load. These numbers suggest a simple "base-value-plus-percent-of-signal" noise model. Note that two sets of lead-lag pumps have significantly different steady state loads: P1,P2 (chilled water) and P5,P6 (heating water). Table A-3. Loads recorded during ISD NILM training (multiply P and Q values by 20). | | | Cir | cuit & N | Aotor Ra | atings | P (V | W) | Q (V | AR) | | | Change | | |------|----------|-----|----------|----------|--------|---------|------|---------|------|------|------|--------|------| | Name | Function | Ckt | Amps | HP | Rpm | Average | s.d. | Average | s.d. | PF | P(W) | Q(VAR) | PF | | P1 | ChW | 30 | | 7.5 | | 287.7 | 2.9 | -344.9 | 2.5 | 0.64 | | | | | P2 | ChW | 30 | | 7.5 | | 268.1 | 2.7 | -202.5 | 2.3 | 0.80 | | | | | P3 | CndW | 30 | | 10 | | 488.7 | 4.3 | -336.7 | 2.6 | 0.82 | | | | | P4 | CndW | 30 | | 10 | | 465.3 | 5.0 | -332.8 | 2.8 | 0.81 | | | | | P5 | HW | 15 | | 1.5 | | 69.7 | 2.3 | -87.3 | 2.2 | 0.62 | | | | | P6 | HW | 15 | | 1.5 | | 77.8 | 2.1 | -98.8 | 2.2 | 0.62 | | | | | S+R | Fans | | | | | 1869 | 42 | -1456 | 13 | 0.79 | | | | | SF | fan | 200 | | 60 | | 1460 | 35 | -1092 | 7 | 0.80 | 409 | -364 | 0.75 | | RF | Fan | 60 | | 20 | | 476 | 28 | -391 | 10 | 0.77 | | | | | | Fans | | | | | 2002 | 40 | -1420 | 26 | 0.82 | | | | | C1.1 | Chiller | | | | | 2775 | 45 | -2115 | 26 | 0.80 | 773 | -695 | 0.74 | | C1.2 | Chiller | | | | | 4162 | 47 | -3470 | 23 | 0.77 | 1387 | -1354 | 0.72 | | C1.3 | Chiller | | | | | 5581 | 55 | -5023 | 22 | 0.74 | 1419 | -1553 | 0.67 | | C1.4 | Chiller | 300 | | | | 6762 | 48 | -6475 | 17 | 0.72 | 1181 | -1453 | 0.63 | ### ISD Floor, Wall and Window Areas The ISD is built on a 24'x24' structural grid 10 bays wide (the long side running almost east to west; the "south" wall normal actually points ~30 degrees east of south) and 4 bays deep (the short side). The main footprint is
thus a bit over 240'x 96'= 23,000 ft². The basement is only 3 bays deep (floors 1 and 2 extend 1 bay further north) giving it a ~240'x 72'= 17,300 ft² footprint. The basement is essentially windowless. Windows on the main floors (1 and 2) are placed every 4 feet to fit the 24-foot grid and the floor-to-floor height is 14 feet. The windows are operable (!) but usually remain closed. The third floor (penthouse) has no windows except on the 50-foot east wall, looking on to a rooftop terrace, which is essentially all glass with a 20" (clear) transom strip of fixed glazings above an 80" (clear) main span of sliding doors and fixed glazings. There are roof doors at the tops of both stairwells, one at the north-east corner (north-most point) and one near the center of the west end of the building (just west of and adjacent to the elevators). Window types are described in Table A-3 and their aggregate surface areas are summarized by location in Tables A-4 and A-5. Table A-4. ISD Window Types | | Dimensions (| H x W, in.) | Clear | Mullion | |------------------------|--------------|--------------|-------------------------|-------------------------| | Type | Finished | Clear | Area (ft ²) | Area (ft ²) | | A (single casement) | 66.0 x 36.5 | 61.5 x 31.25 | 13.35 | 3.38 | | B (narrow fixed) | 108.0 x 17.0 | 64.7 x 13.5 | 9.44 | 3.31 | | | | 36.0 x 13.5 | | | | C (wide fixed) | 108.0 x 99.0 | 64.7 x 95.5 | 66.78 | 7.47 | | | | 36.0 x 95.5 | | | | D (door) | 83.5 x 36.0 | 66.7 x 24.8 | 11.35 | 9.53 | | E (narrow transom) | 24.0 x 72.0 | 20.0 x 70.5 | 9.79 | 2.21 | | G (double casement) | 66.0 x 22.5 | 61.5x18.3 | 7.82 | 2.50 | | I (sliding door) | 83 x 36 | 80 x 33 | 18.33 | 2.42 | | J (door-height, fixed) | 83 x 40 | 80 x 37 | 20.56 | 2.50 | | K (transom) | 23 x 40 | 20 x 37 | 5.14 | 1.25 | Table A-5. ISD Window Inventory | Floor | Wall | Туре | Qty | Clear (ft ²) | Mullion (ft ²) | |-------|------|------------------------|-----|--------------------------|----------------------------| | 1 | N | A (single casement) | 54 | 720.7 | 182.5 | | 1 | N | B (narrow fixed) | 2 | 18.9 | 6.6 | | 1 | N | C (wide fixed) | 1 | 66.8 | 7.5 | | 1 | N | D (door) | 4 | 45.4 | 38.1 | | 1 | N | E (narrow transom) | 2 | 19.8 | 4.4 | | 1 | S | A (single casement) | 60 | 800.8 | 202.8 | | 1 | W | H (double casement) | 5 | 78.2 | 25.0 | | 2 | N | A (single casement) | 60 | 800.8 | 202.8 | | 2 | S | A (single casement) | 60 | 800.8 | 202.8 | | 2 | W | H (double casement) | 5 | 78.2 | 25.0 | | 3 | Е | I (sliding door) | 2 | 36.66 | 4.8 | | 3 | Е | J (door-height, fixed) | 12 | 246.7 | 30.0 | | 3 | Е | K (transom) | 14 | 72.0 | 17.5 | Table A-6. ISD Window and Wall Areas | | Wall Dimensions (ft) | Gross(ft ²) | Clear(ft ²) | Mullion(ft ²) | |--------|----------------------|-------------------------|-------------------------|---------------------------| | N | 2x240x14 + 110x11 | 7,930 | 1672.3 | 441.9 | | Е | 2x96x14+72x14+50x11 | 4,246 | 355.4 | 52.3 | | S | 3x240x14 + 110x11 | 11,290 | 1601.6 | 405.6 | | W | 2x96x14+72x14+50x11 | 4,246 | 156.4 | 50.0 | | Roof | 240x96 | 23,040 | | | | ground | 240x(96+12) | 25,920 | | | **Retrofits and Repairs.** The CV system serving ISD is inherently inefficient but there are a number of repairs and retrofits that will make a big difference. First and foremost, decide whether or not to convert that system to VAV. If the system is to remain CV, do the following: 1) repair air distribution. Make sure all zone control dampers function from fully open to fully shut; damper leakage at full shut position must be less than 2% of design flow. Repair all leaks in hot and cold decks and be sure to repair leaks and balancing dampers downstream, as well as upstream of the control dampers. Replace the cooling coil condensate pan with a stainless steel pan. Clean and repair heating and cooling coils. - 2) Upgrade zone controls to DDC with e/p interface to existing damper actuators. All zone temperatures must be available to, and all actuator positions must be commandable by, the supervisor. All temperature sensor locations must provide reasonable estimate of average zone temperature (±°F) with fans on or off and not be adversely influenced by direct solar gains, zone supply air temperature, or heat generated by electric lights, computers, and other equipment. In particular, supervisor must be able to reset hot and cold deck temperatures such that simultaneous heating and cooling are minimized or, alternatively, total cost of central plant operation is minimized. - 3) Upgrade central plant equipment. Install 2-speed chilled water pumps or replace with VSD pumps. Install 2-speed condenser water pumps or replace with VSD pumps. Install 2-speed cooling tower fans or replace with VSD fans. - 4) Upgrade central plant controls. Replace zone temperature control loops so that setpoints can be centrally controlled and local loop temperature and damper positioning commands are available to the supervisory control system. Replace pneumatic hot and cold control loops with DDC. Replace boiler temperature controls with DDC so that boiler temperature can be reset. Replace chilled water temperature control loop with DDC so that it can be reset by the supervisor. Reprogram (or replace with appropriately programmable) compressor sequence controls so that supervisor can select local loop control on chilled water or cold deck temperature or over-ride for modes such as optimal start or curtailment; compressors should come on one at a time alternating between the north and south chiller units and commissioning should check that when one chiller is off line for service, the appropriate number of compressors come on in the other chiller. Install DDC local loop controls to make chilled water, condenser water, and tower air flow rates approximately proportional to chiller load when in fail-safe mode but program supervisor to control operation for maximum whole plant efficiency in normal operating mode. Cooling tower air and water-side discharge temperatures and cooling coil air- and water-side inlet and outlet temperatures must be available to the supervisor. - 5) Adjust and upgrade economizer controls. Clean, repair and adjust dampers and existing pneumatic actuators. Replace existing pneumatic control loop with DDC including an accurate, properly shielded outdoor air temperature sensor (ok to be from another building on the N. Eastern Ave. campus) an accurate and properly situated mixed air sensor, and an accurate and properly situated return air temperature sensor. All signals and damper commands available to supervisor. - 6) Rebalance air system to provide uniform supply air flow over conditioned floor area, correct building pressure, and correct ventilation air to each zone. - If a VAV retrofit is pursued, replace recommendations (1), (2) and (6) with actions appropriate to the VAV system. In particular, the supervisor must still be able to reset hot and cold deck temperatures such that simultaneous heating and cooling are minimized or, alternatively, total cost of central plant operation is minimized. In addition, supply air static pressure reset control and demand ventilation control should be provided so that fan power can be controlled by the supervisor in conjunction with optimal operation of other central plant equipment as outlined in recommendation (4). # Appendix B. ECC Building Description The Children's Court is a 275,000 ft² structure built in 1992 with perimeter baseboard heating and a single variable air volume system to provide fresh air and cooling. The plant comprises three boilers, two water heaters, and two centrifugal chillers. Two non-intrusive load monitors (NILMs) have been installed, one at the service entrance and one at the VAV/chiller motor control panel (MCP). Thermal instrumentation includes temperature and humidity of return-, mixed- and supply-air. Fan inlet pressure taps have been installed to measure flow rate but the pressure transducers are not yet on line. The NILMs log continuously at 12Hz; thermal parameters are averaged over 1-minute intervals. Table B-1. ECC Building HVAC Electrical Loads. | | 3-1. ECC Building ITVAC Electr | | Circuit & Motor Ratings | | | | | |------|--------------------------------|-----|-------------------------|------|----------|--|--| | Name | Function | Ckt | Amps | HP | Rpm | | | | P1 | Chilled water pump 1 | 50 | 34 | 30 | 1760 | | | | P2 | Chilled water pump 2 | 50 | 34 | 30 | 1760 | | | | P3 | Condenser water pump 1 | 75 | 61 | 50 | 1765 | | | | P4 | Condenser water pump 2 | 75 | 61 | 50 | 1765 | | | | CT1 | Cooling tower fan 1 | 30 | 24.3/9.2 | 20/5 | 1750/800 | | | | CT2 | Cooling tower fan 2 | 30 | 24.3/9.2 | 20/5 | 1750/800 | | | | P5 | Hot water pump 1 | 30 | 13.6 | 10 | 1755 | | | | P6 | Hot water pump 2 | 30 | 13.6 | 10 | 1755 | | | | P7 | Hot water pump 3 | 30 | 13.6 | 10 | 1755 | | | | SF1 | Supply fan 1 | 200 | 169 | 150 | Variable | | | | SF2 | Supply fan 2 | 200 | 169 | 150 | Variable | | | | RF1 | Return fan 1 | 75 | 62.5 | 50 | Variable | | | | RF2 | Return fan 2 | 75 | 62.5 | 50 | Variable | | | | CH1 | Chiller 1 | 500 | 381 | | | | | | CH2 | Chiller 2 | 500 | 381 | | | | | | EF1 | Exhaust fan 1 | | | 5 | | | | | EF2 | Exhaust fan 1 | | | 2 | | | | | EF3 | Exhaust fan 1 | | | 2 | | | | | EF4 | Exhaust fan 1 | | | 5 | | | | | EF5 | Exhaust fan 1 | | | 1 | | | | | F1 | Fan 1 | | | 2 | | | | | F2 | Fan 2 | | | 2 | | | | | AC1 | Roof-top Unit | | | | | | | | AC2 | MW Room; split system | | | | | | | | AC3 | Data Comm Room | | | | | | | Table B-2. ECC HVAC K20 Channel Assignments (all are A-phase currents). | K20 | | | Circui | CT FS | | | |---------|------|------------------------|--------|----------|------|------| | Channel | Name | Function | Ckt | Amps | HP | Amps | | 10 | P1 | Chilled water pump 1 | 50 | 34 | 30 | 75 | | 10 | P2 | Chilled water pump 2 | 50 | 34 | 30 | | | 6 | P3 | Condenser water pump 1 | 75 | 61 | 50 | 150 | | 6 | P4 | Condenser water pump
2 | 75 | 61 | 50 | | | 4 | CT1 | Cooling tower fan 1 | 30 | 24.3/9.2 | 20/5 | 50 | | 1 | CT2 | Cooling tower fan 2 | 30 | 24.3/9.2 | 20/5 | 50 | | 9 | P5 | Hot water pump 1 | 30 | 13.6 | 10 | 25 | | 9 | P6 | Hot water pump 2 | 30 | 13.6 | 10 | | | 2 | P7 | Hot water pump 3 | 30 | 13.6 | 10 | 25 | | 0 | SF1 | Supply fan 1 | 200 | 169 | 150 | 250 | | 8 | SF2 | Supply fan 2 | 200 | 169 | 150 | 250 | | 7 | RF1 | Return fan 1 | 75 | 62.5 | 50 | 150 | | 7 | RF2 | Return fan 2 | 75 | 62.5 | 50 | | | 12 | CH1 | Chiller 1 | 500 | 381 | | 500 | | 13 | CH2 | Chiller 2 | 500 | 381 | | 500 | | 5 | EF1 | Exhaust fan 1 | | | 5 | 25 | | 5 | EF2 | Exhaust fan 1 | | | 2 | | | 5 | EF3 | Exhaust fan 1 | | | 2 | | | | EF4 | Exhaust fan 1 | | | 5 | | | 3 | EF5 | Exhaust fan 1 | | | 1 | 25 | | 3 | F1 | Fan 1 | | | 2 | | | 3 | F2 | Fan 2 | | | 2 | | | | | Connected load | | 762 | | | | 11 | MCC | HVAC MCC feed | | | | 2000 | Edmund Edelman Children's Court BIS#5341; LACO#X201Completion date: 1 May 1992 201 Centre Plaza Drive, Lighting retrofit: 19 January 1999 Monterey Park, CA 91754Floor area net/gross (ft2): 181,958/275,530 Function: Courtrooms and OfficesOperating hours: 9 Heat: two gas-fired hot water boilers Cooling: two 500-Ton, 3-stage, inlet vane-modulated centrifugal chillers Distribution: Variable-air-volume system; built-up AHU, dual supply & dual return fans Electric Utility: SCE, I-6 (interruptible) rate Contact: Larry Mahrenholtz # Children's Court Floor, Wall and Window Areas The ECC is an 8-story (G, L, 2...6, P) steel frame structure built in an ell with the north and east wings meeting at the southwest corner. The ground floor extends to the north below a lobby-level terrace and therefore has a larger footprint than the floors above it. The penthouse covers part (a central north-south strip) of the north wing. It comprises chiller, boiler, AHU, electrical, and elevator machine rooms. Six public elevators serve G through 6; two service elevators serve G through P. The service elevator machine room rises above the main penthouse level. There is a central stairwell near the main elevators and additional stairwells at the north and east gable ends of the building. Gable ends are windowless above the ground floor. Court rooms form the core zones of the 3rd - 5th floors with public areas along the north and east walls and judges' chambers and support offices along the south and west walls. The ground floor houses offices (including sheriffs'), a cafeteria, the main electrical and phone rooms, and other service areas. The lobby level has public areas and administrative offices. The second floor has public areas, social services and administrative offices. The sixth floor houses leased office space for lawyers. Window types and their aggregate surface areas are not included in this report but will be listed in subsequent documents. ### **Appendix C. Model Identification Script** ``` %testctf7x.m 2003.06.07 Hittle-Bishop constraint: via 0<x<1; xbx % is search vector, rbr becomes an intermediate vector in resimctfxbx() %testctf7.m 2003.06.06 2-step search at each increment of model order %testctf6.m 2003.01.12 fit progressively higher order models if 1;%---generate sine responses by qctf() and tctf() top p.14--- bb=[.53355063E-4 .013730926 .064549573 .037668124 .33696494E-2 .38707349E-4]; cc=[5.9708847 -10.761687 5.967169 -1.1142596 .057851433 -.54859184E-3]; dd=[1.0 -1.2165741 .38310083 -.029577257 .37410267E-3 -.43038736E-6]; crrx=sum(bb)/sum(cc); cc=crrx*cc; cof=[bb;-cc;dd]; np=length(bb);n=np-1; nnp=n+np; m=4*12;%30; tz=[1:m]'; tz=0*tz; tz(1:m/2)=1+tz(1:m/2); tx=[tz(1+m/4:m);tz(1:m/4)]; qstart=0*tz(1:n);tx=[qstart;tx];tz=[qstart;tz]; q=qctf(cof,qstart,tx,tz); figure(1); plot(tx); hold on; plot(tz, 'g'); plot(q, 'r'); plot([0;length(tx)],[0;0],'k'); [be,ce,de,se]=lsqctf(5,q,tx,tz); fprintf(1, 'norm(bb-be) = %11.4q \ ', norm(bb-be')) disp(bb);disp(be') fprintf(1, 'norm(cc-ce) = %11.4e\n', norm(cc-ce')) disp(cc);disp(ce') fprintf(1, 'norm(dd-de)=%11.4g\n', norm(dd-[1,-de'])) disp(dd); disp([1,-de']) end if 1;%---test manipulation of CTF coefficients and roots bot p.14---- np=length(bb):n=np-1: b=[-cof(3,2:np),cof(1,:),-cof(2,:)]'; dbcof=[roots(cof(3,:)); cof(1,:)'; roots(cof(2,:))]; disp(1./log(1./roots(cof(3,:))'));%tau/timestep q (dd) disp(1./log(1./roots(cof(2,:))'));%tau/timestep Tz (cc) disprbr (dbcof) phi=poly(dbcof(1:n)); bb=dbcof(np:n+np)'; thz=poly(dbcof(np+np:n+n+np)); thz=(sum(bb)/sum(thz))*thz; newb=[-phi(2:np),bb,thz]'; disp('|newb-b|=');disp(norm(newb-b)) end x=zeros(m, 3*np); for i=1:np x(:,i) = q(1+np-i:m+np-i); x(:,np+i) = tx(1+np-i:m+np-i); x(:,np+np+i)=tz(1+np-i:m+np-i); end: y=x(:,1); hold off xx=x(:,2:3*np); fig=1 %check error norm given by the correct model----- figure(2); rbr=dbcof; xbx=rbr; %xbx(1)=rbr(1) xbx(nnp+1) = rbr(nnp+1); xbx(1) = rbr(1) / rbr(nnp+1); for i=2:n: xbx(nnp+i) = rbr(nnp+i)/rbr(i-1); xbx(i) = rbr(i) / rbr(nnp+i); end fig=.99 if 1 f=resimctfxbx(xbx,xbx,xx,y); plot(f); hold on; disp('xbxnorm');norm(f) opti=optimset('maxfune',8000*length(dbcof),'maxiter',4000,'tolfun',1e-11,'tolx',1e- 11, 'diffmin', 1e-9); xbx=fig*xbx; xbx(nnp+1)=xbx(nnp+1)*1.005/fig b = 1. + 0*xbx; lb=.1*b; ub=.9*b; lb(np:nnp) = deal(0); ub(nnp+1) = xbx(nnp+1); [xbx, sse, e] = lsqnonlin('resimctfxbx', xbx, lb, ub, opti, xbx, xx, y+.2*randn(length(y), 1)); ``` ``` figure(3);plot(e) disp([norm(rbr-dbcof),sse,e'*e,sqrt(sse/length(e))]) rbk=xbx;%rbk(1)=xbx(1) DELETE THIS STUFF rbk(1) = xbx(1) * rbk(nnp+1); for i=2:n;rbk(nnp+i)=xbx(nnp+i)*rbk(i-1);rbk(i)=xbx(i)*rbk(nnp+i);end disprbr(rbk) e=resimctfxbx(xbx,xbx,xx,y); disp('rbr-dbcof|,sse,sse,rms=') disp([norm(rbr-dbcof),sse,e'*e,sqrt(sse/length(e))]) alle=e; figure (4); plot (e) end return function f=resimctfxbx(xbxr,xbx,x,y) %this uses past predicted y=ye; also try with past values of y data % f=resCTFrbr(rbr,x,y) returns m residuals given parm estimate, % b=[roots(phi);thx;roots(thz)], and data x(mxlen(b)),y(mx1). % Columns of x correspond to [phi',thx',thz'] elements. See testctf3 np=(length(x(1,:))+1)/3; n=np-1; nnp=n+np; if length(xbx) == length(xbxr); %for 2-step t-consts search when incrementing model order xbx=xbxr; else xbx(n-1:n) = xbxr(1:2); xbx(np:n+np)=xbxr(3:2+np); nr=length(xbxr); xbx(n+np+n-1:n+np+n)=xbxr(nr-1:nr); rbr=xbx; %rbr(1)=xbx(1) rbr(1) = xbx(1) * rbr(nnp+1); for i=2:n; rbr(nnp+i) = xbx(nnp+i) * rbr(i-1); rbr(i)=xbx(i)*rbr(nnp+i); end dbc=[rbr;0]; p=poly(rbr(1:n)); dbc(1:n) = -p(2:np)'; p=poly(rbr(1+np+n:n+np+n)); dbc(1+np+n:np+np+n)=p'*sum(rbr(np:np+n))/sum(p); ye=0*y; ye(1)=x(1,:)*dbc; for k=2:length(y); x(k,2:n) = x(k-1,1:n-1); x(k,1) = ye(k-1); %x(k,1) = y(k-1); ye(k) = x(k, :) *dbc; end f=y-ye; ``` # Appendix D. Design Conditions and TMY Weather ASHRAE Fundamentals 1997, Chapter 26 Climatic Design Information Latitude: 33.93 Longitude:118.4 Elevation (m):32 Heating 99.6% (C):6.2 Heating 99.0% (C):7.4 Windspeed 1% (m/s):9.2 Windspeed 2.5% (m/s):7.9 Windspeed 5% (m/s):7.1 Daily Max (C):35.9 Daily Min (C):3.5 Humid ratio 0.4% (g/kg):14 Humid ratio 1% (g/kg):14 Humid ratio 2% (g/kg):13 # TMY2: WBAN=23174 » tmystats Heating 99.5% (C) 7.2 Heating 99.0% (C) 7.8 Cooling 99.0% (C) 26.1 Cooling 99.5% (C) 27.2 Windspeed 1% (m/s)11.0 Windspeed 2.5%(m/s) 7.7 Windspeed 5% (m/s) 6.7 Daily Min(C) 4.4 Daily Max(C) 35.0 ### Appendix E. Simulation To compare cooling control strategies we must estimate annual energy use and cost for each strategy while all other aspects of building operation are held constant. These "constants" include fan and chiller performance curves; fan, chiller, and auxiliary equipment control sequences; weekly and holiday schedules that describe internal gains, minimum outside air and fan static pressure; zone temperature setpoint schedule and related control parameters; and weather. Chiller Performance. ISD coil loads were monitored for two weeks, 29 August – 9 September, 2002, a period which included very hot weather. The total coil load is computed from its sensible, $Fc_p(T_{cold} - T_{mix})$ and latent, $Fh_{fg}(w_{mix} - w_{cold})$, air-side components. The measured 5-minute average sensible and total coil load are plotted in Figure E-1 against chiller power. Note that latent fraction increases moderately with load, as expected for an essentially constant air-side flow rate. Chiller specific power, expressed as chiller power per unit coil load (kW/Ton) decreases with load. This is also expected. The condenser and evaporator areas are fixed so the approach temperatures increase with load resulting in the lift temperature increasing even faster than the condenser-chilled water temperature difference. Only one chiller was operated during this period. There are four compressors per chiller and the resulting performace in each of four operational stages, clearly evident in the plot, is summarized in Table 1. Table E-1. ISD chiller performance summary for 29 August – 9 September 2002 | Qtot | Qtot | Qlat/Qtot | Pch/Qtot | | | | |---------|----------|-----------|----------|--|--|--| | (kBtuh) | (RefTon) | (-) | (kW/RT | | | | | 770 | 64 | 0.28 | 0.52 | | | | | 1270 | 106 | 0.31 | 0.65 | | | | | 1500 | 125 | 0.30 | 0.81 | | | | | 1700 | 142 | 0.31 | 0.93 | | | | Figure E-1. Observations of ISD chiller performance (one-minute average data). A power law, shown in Figure E-2. is used to represent chiller performance in the simulation. Control parameters determine maximum capacity and at what load the second chiller starts. Figure E-2. Power law used to simulate ISD part-load chiller performance. The chiller performance measured in ECC is shown in Figure E-3. Note that efficiency is best at 520 Tons (360 kW input or 0.69 kW/Ton) and drops as capacity is lowered because of flow losses. The relation between fan power and cooling load is shown for ECC in Figure E-4. There are two regimes, one reflecting proper control in which fan power increases with load, and the other reflecting recovery from night setback when most zones are calling for
maximum air because they have unsatisfied cooling load. **Internal Gain Schedule.** The measured internal gains are shown in the Figure E-5. Weekday and weekend profiles are distinct and repeatable. The building is supposed to be operated in weekend mode on Fridays but some people do work and the resulting lighting and plug loads are variable. The 24-hour weekday and weekend profiles shown in Figure E-6 was obtained by averaging the observed kW numbers. 0 100 200 300 Input (kW) 400 500 Figure E-3. ECC chiller performance based on air-side sensible + latent loads Figure E-5. Measured hourly loads (main – HVAC) for the ISD building (kW). Figure E-6. Occupied and unoccupied internal gain schedule used for ISD simulations (kW). Control of Fan and Outside Air. The following truth table represents the control structures used in the simulation, which can be readily ported to an EMCS for the demonstration. The logical input columns (1-6) have entries of 1=true, 0=false and *=either. The zone temperature setpoint relation $T_z|T_e$ refers to the economizer set point, T_e , which may be different in occupied and unoccupied periods. For example $T_z < T_e$ generally turns the fan off. The logic output columns (7-8) refer to fan and damper operation. F_{nom} is the nominal (maximum) supply fan mass flow rate and $\%F/F_{nom}$ is the fraction of F_{nom} expressed as a percent. | Occupied | Night | Fan | T _z >T _{oa} | $T_z T_e$ | No | %F/F _{nom} | %OA | Notes | |----------|-------|------|---------------------------------|-------------|------|---------------------|-----|-------| | | fan | gain | | | econ | | | | | 1 | * | * | * | * | 1 | 100 | 15 | (1) | | 1 | * | * | 0 | * | 0 | 100 | 15 | | | 1 | * | * | 1 | < | 0 | 100 | 15 | | | 1 | * | * | 1 | > | 0 | 100 | 100 | (2) | | 0 | * | * | * | * | 1 | 0 | 0 | (1) | | 0 | 0 | 0 | * | * | 0 | 0 | 0 | | | 0 | 1 | 0 | 0 | * | 0 | 0 | 0 | | | 0 | 1 | 0 | 1 | < | 0 | 0 | 0 | | | 0 | 1 | 0 | 1 | > | 0 | 100 | 100 | (2) | | 0 | 1 | >0 | * | * | 0 | Illegal | | | | 0 | 0 | >0 | 0 | * | 0 | 0 | 0 | | | 0 | 0 | >0 | 1 | < | 0 | 0 | 0 | | | 0 | 0 | >0 | 1 | > | 0 | (3) | (3) | (2,3) | ⁽¹⁾ when NoEcon is set we will always zero fanen and fanGain . **CRTF for Simulation.** Recall from the *Envelope Response Model* subsection that the discrete-time model (5) can be evaluated recursively for Q_z or T_z : for $$T_z$$: $\theta_{z,0}T_z = B_0^n(\phi_z, Q_z) + B_0^n(\theta_w, T_w) - B_1^n(\theta_z, T_z)$ (7a) (that is, $T_z = \text{RHS}$ expression divided by $\theta_{z,0}$); for $$Q_z$$: $-\phi_{z,0}Q_z = B_1^n(\phi_z, Q_z) + B_0^n(\theta_w, T_w) - B_0^n(\theta_z, T_z)$ (8) With $\varphi_z = -1$ eqn (8) becomes: $$Q_z = B_1^n(\phi_z, Q_z) + B_0^n(\theta_w, T_w) - B_0^n(\theta_z, T_z)$$ (9) when Q_z includes outside air, i.e., $Q_z = Fc_p(T_z - T_{oa})$ - Q_{other} , the expression for T_z becomes: $$T_{z} = \frac{Fc_{p} + Q_{other} + B_{1}^{n}(\phi_{z}, Q_{z}) + B_{0}^{n}(\theta_{w}, T_{w}) - B_{1}^{n}(\theta_{z}, T_{z})}{\theta_{z,0} + Fc_{p}}$$ (7b) ⁽²⁾ when result is $T_z < T_e$, set $T_z = T_e$, evaluate CRTF, and reduce fan power so that airflow, F, corresponds to Q_z ⁽³⁾ $F=g*(T_z-T_{oa})$ where g is daily fan gain, the optimization variable. **Control Parameters.** Eight control logic sequences are defined in order to explore the extent to which simple control tactics can approach the optimal⁸. We consider the following free cooling control cases: - 0) none, - 1) actual, - 2) standard, - 3) Lower day setpoint, - 4) Night precooling, - 5) Lower night setpoint, - 6) cases 3 and 5 combined, - 7) case 6 augmented by chiller on hot nights. Fans run continuously during occupied hours and as needed (cases 4-7) to satisfy night setpoint. The effects of pressure drop and fan efficiency are assessed in the post processor by taking the product of annual air volume and specific fan power. The main simulation needs to integrate air flow separately for day and night operation so that we can consider the case of opening windows and using the return fan only (e.g. tasking janitors to open all windows "x inches" at night; e-mailing occupants in day to act as online forecast/simulation results dictate...with some flexibility for personal comfort). Probably useful to track day and night H/C loads separately as well. Cases with reduced free cooling setpoint (3-7) can benefit from online forecast/response prediction/optimal control. Daily prediction of heating/cooling needs (internal and solar gains; outside air and CRTF loads) is basic to this control improvement. For discrete-state/schedule-based control we assign control parameters for the eight cases as follows. The cooling setpoints are T_m for mechanical cooling and T_e for economizer cooling. Subscript "o" is for occupied hours; subscript "n" is for unoccupied hours. | | Night fan | fOA | Tecon | | | | | |------------------|-----------|------|--------|------|------|------|------| | case | enable | econ | enable | Tz2o | Tz2n | Tz1o | Tz1n | | 0 none | 0 | 0 | -99 | 74 | 74 | 74 | 199 | | 1 actual | 0 | .7 | 65 | 74 | 74 | 74 | 199 | | 2 ideal | 0 | 1.0 | 199 | 74 | 74 | 74 | 199 | | 3 lower day sp | 0 | 1.0 | 199 | 68 | 74 | 74 | 199 | | 4 night=day sp | 1 | 1.0 | 199 | 74 | 74 | 74 | 199 | | 5 lower night sp | 1 | 1.0 | 199 | 74 | 68 | 74 | 199 | | 6(3+5) | 1 | 1.0 | 199 | 68 | 68 | 74 | 199 | | 7 (6+night chlr) | 1 | 1.0 | 199 | 68 | 68 | 74 | 74 | _ ⁸ Free cooling potential is a function of climate (diurnal and seasonal temperature and solar radiation) and plant (slow, medium, and fast mass, solar aperture/orientation, internal gain cycles, fan and chiller power), as well as control strategy. ## **Appendix F. Electric Rate Structure** The incremental cost of a change in HVAC control cannot be determined independent of other building loads because of the utility rate structure. A cost algorithm therefore has to be built into the simulation (as well as any real world implementation) that models optimal control. The code and test results (Figures F-1 and F-2) are documented below. Function electial accepts a vector of 8760 hourly at-the-meter loads, the start and end times of the billing period of interest, and the rate parameters. Two values are returned: annual energy cost and an array of the hourly demand charges that determine annual cost of peak demands by rate bin. The first array index is the month and the second is the time-of-use index keyed to the time-of-use periods defined by the 168-hour rate schedule array: 1=off-peak, 2=mid-peak and 3=on-peak. Note that the various control objective functions generally ignore the annual ratchet charge and only penalize daily demand cost when it exceeds the monthly baseline. Each day we minimize (cost of energy) + xd(off) + xd(mid) + xd(peak) + xd(rat) where $x \in [off,mid,peak,rat]$ and xd(x) is rate(x)*(demand(x)) in excess of monthly baseline demand(x)). {This attempts to handle the possibility that the baseline peaks may occur on different days; if not, it simplifies to: minimize (cost of energy) + (excess demand cost) where (excess demand cost) = $sum_x(rate(x)*demand(x))$ - baseline($sum_x(rate(x)*demand(x))$)}. We use the fan-enabled baseline under the assumption that it will have the lower peak-period demand and thus the lower sum_x . An alternative is to let xd(x) be lesser of the two baseline demand components. ``` %testElecBill.m 20021222pra rate=struct('kwh',[.08944,.12141,.12141;.08828,.10917,.19564],'kw',[0,0,0;0,2.7,17.95]); rate.kwh rate.kw rat.chg=6.60; rat.f=.5; sced(1:24*7) = 1; sced(9:23) = 2; sced(13:18) = 3; sced(73:96) = sced(1:24); sced(97:120) = sced(1:24); sced(121:144) = sced(1:24); sced(145:168) = sced(1:24); dlsavings=0; %WINTER for i=1:168 p(1:8760)=0; p(i)=1; [ann(i), kwm] = elecbill(p, [1 168], rate, sced, rat); kwc1(i) = kwm(1, sced(i)); subplot(3,1,1);plot(ann);ylabel('Use+Dmd') title('Cost per kWh on given hour of the week in Winter') for i=1:168 p(1:8760)=0; p(i)=1; [ann(i), kwp, kwr(i)] = elecbillkwh(p,[1,168], rate, sced, rat); kwc2(i) = kwp(sced(i)); end: subplot(3,1,2);plot(ann);ylabel('Use Only') subplot(3,1,3);plot(kwc1,'b');hold on plot(kwc2,'rx');hold off; ylabel('Dmd Only') figure dlsavings=1:%SUMMER for i=1:168 p(1:8760)=0; if mean(p)~=0; disp(max(p)); end; p(4800+i)=1; ann(i)=0; [ann(i), kwm]=elecbill(p, [4801 4968], rate, sced, rat); %note 181*24 < 4800+i <= 212*24 therefore m=7 kwc1(i) = kwm(7, sced(1+mod(4799+i+dlsavings, 24*7))); end: subplot(4,1,1);plot(ann);ylabel('Use+Dmd') title('Cost per kWh on given hour of the week in Summer') for i=1:168 p(1:8760)=0; p(4800+i)=1; ``` ``` [ann(i),kwp,kwr(i)] = elecbilkwh(p,[4801,4968],rate,sced,rat); kwc2(i) = kwp(sced(1+mod(4799+i+dlsavings,24*7))); end; subplot(4,1,2);plot(ann);ylabel('Use Only') subplot(4,1,3);plot(kwc1,'b'); subplot(4,1,4);plot(kwc2,'r'); ylabel('Dmd Only') ``` Figure F-1. Cost per kW for each hour of the week in Winter Figure F-2. Cost per kW for each hour of the week in Summer ### **Appendix G.** □ **Optimization Algorithms** Cases 11-15 of the economizer and precooling controls study use a variable duration of night ventilation to reduce night fan energy consumption, relative to cases 6-10, in which the fan runs at night whenever the indoor-outdoor temperature difference is positive. The algorithm for determining start time each night is suboptimal in the sense that it minimizes electric cost each day without considering the effect, assumed to be small, on subsequent days. The assertion that this effect is small is based on the following reasoning. On warm days, precooling will delay the chiller start time but the thermal state at the end of occupancy will be nearly the same regardless of the amount of precooling. On cool days the chiller will not come on and the zone temperature will usually not rise above the economizer set point so, again, the thermal state at the end of occupancy will be little influenced by the amount of precooling. On mild days
(when zone temperature rises above the economizer setpoint but does not reach the mechanical cooling set point until late in the day, if at all) the average temperature of thermal mass may depend appreciably on the amount of precooling; however mild days are usually followed by cool nights in which the amount of fan energy for a given amount of precooling is small. Because thermal response is modeled in discrete time with one hour time steps, the optimal start time must be one of the (usually 12 to 14) *unoccupied* hours or the first *occupied* hour if the optimal duration is zero. It is no great computational burden to solve this such an optimization problem by *complete enumeration*, i.e. by testing all possible start times, i=1:n+1, where n is the number of unoccupied hours as follows. - 1) simulate from the last occupied hour to the i^{th} unoccupied hour with the fan off; - 2) simulate hours i+1:n with the fan on; - 3) simulate occupied hours in the usual way with fan on and chiller only as needed. After recording the daily cost for all i=1:n+1, the least-cost value of i is selected and the three steps are repeated to obtain the final daily state. The foregoing process is repeated for each day of the year in sequence, d=1:365. The computations can be reduced if it is assumed, as is reasonable, that daily cost will drop monotonically up to the least cost value of i and then increase monotonically. Under this assumption the search can stop at the first value of i that has a higher cost than the previous value and the process repeated for the previous value before moving on to the next day. With tempering, two monotonic searches are nested for each day. At each value of i, the number of tempering hours, j, is incremented j=0, 1, ... until cost stops decreasing and the minimum-cost thus found is associated with the i^{th} fan start time. The least cost value of i is then found just as outlined previously.